Cargando…
Integration of a recent infection testing algorithm into HIV surveillance in Ireland: improving HIV knowledge to target prevention
Recent infection testing algorithms (RITA) for HIV combine serological assays with epidemiological data to determine likely recent infections, indicators of ongoing transmission. In 2016, we integrated RITA into national HIV surveillance in Ireland to better inform HIV prevention interventions. We d...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6518489/ https://www.ncbi.nlm.nih.gov/pubmed/30869051 http://dx.doi.org/10.1017/S0950268819000244 |
_version_ | 1783418460119760896 |
---|---|
author | Robinson, E. Moran, J. O'Donnell, K. Hassan, J. Tuite, H. Ennis, O. Cooney, F. Nugent, E. Preston, L. O'Dea, S. Doyle, S. Keating, S. Connell, J. De Gascun, C. Igoe, D. |
author_facet | Robinson, E. Moran, J. O'Donnell, K. Hassan, J. Tuite, H. Ennis, O. Cooney, F. Nugent, E. Preston, L. O'Dea, S. Doyle, S. Keating, S. Connell, J. De Gascun, C. Igoe, D. |
author_sort | Robinson, E. |
collection | PubMed |
description | Recent infection testing algorithms (RITA) for HIV combine serological assays with epidemiological data to determine likely recent infections, indicators of ongoing transmission. In 2016, we integrated RITA into national HIV surveillance in Ireland to better inform HIV prevention interventions. We determined the avidity index (AI) of new HIV diagnoses and linked the results with data captured in the national infectious disease reporting system. RITA classified a diagnosis as recent based on an AI < 1.5, unless epidemiological criteria (CD4 count <200 cells/mm(3); viral load <400 copies/ml; the presence of AIDS-defining illness; prior antiretroviral therapy use) indicated a potential false-recent result. Of 508 diagnoses in 2016, we linked 448 (88.1%) to an avidity test result. RITA classified 12.5% of diagnoses as recent, with the highest proportion (26.3%) amongst people who inject drugs. On multivariable logistic regression recent infection was more likely with a concurrent sexually transmitted infection (aOR 2.59; 95% CI 1.04–6.45). Data were incomplete for at least one RITA criterion in 48% of cases. The study demonstrated the feasibility of integrating RITA into routine surveillance and showed some ongoing HIV transmission. To improve the interpretation of RITA, further efforts are required to improve completeness of the required epidemiological data. |
format | Online Article Text |
id | pubmed-6518489 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Cambridge University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-65184892019-06-04 Integration of a recent infection testing algorithm into HIV surveillance in Ireland: improving HIV knowledge to target prevention Robinson, E. Moran, J. O'Donnell, K. Hassan, J. Tuite, H. Ennis, O. Cooney, F. Nugent, E. Preston, L. O'Dea, S. Doyle, S. Keating, S. Connell, J. De Gascun, C. Igoe, D. Epidemiol Infect Original Paper Recent infection testing algorithms (RITA) for HIV combine serological assays with epidemiological data to determine likely recent infections, indicators of ongoing transmission. In 2016, we integrated RITA into national HIV surveillance in Ireland to better inform HIV prevention interventions. We determined the avidity index (AI) of new HIV diagnoses and linked the results with data captured in the national infectious disease reporting system. RITA classified a diagnosis as recent based on an AI < 1.5, unless epidemiological criteria (CD4 count <200 cells/mm(3); viral load <400 copies/ml; the presence of AIDS-defining illness; prior antiretroviral therapy use) indicated a potential false-recent result. Of 508 diagnoses in 2016, we linked 448 (88.1%) to an avidity test result. RITA classified 12.5% of diagnoses as recent, with the highest proportion (26.3%) amongst people who inject drugs. On multivariable logistic regression recent infection was more likely with a concurrent sexually transmitted infection (aOR 2.59; 95% CI 1.04–6.45). Data were incomplete for at least one RITA criterion in 48% of cases. The study demonstrated the feasibility of integrating RITA into routine surveillance and showed some ongoing HIV transmission. To improve the interpretation of RITA, further efforts are required to improve completeness of the required epidemiological data. Cambridge University Press 2019-03-04 /pmc/articles/PMC6518489/ /pubmed/30869051 http://dx.doi.org/10.1017/S0950268819000244 Text en © The Author(s) 2019 http://creativecommons.org/licenses/by/4.0/ This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Paper Robinson, E. Moran, J. O'Donnell, K. Hassan, J. Tuite, H. Ennis, O. Cooney, F. Nugent, E. Preston, L. O'Dea, S. Doyle, S. Keating, S. Connell, J. De Gascun, C. Igoe, D. Integration of a recent infection testing algorithm into HIV surveillance in Ireland: improving HIV knowledge to target prevention |
title | Integration of a recent infection testing algorithm into HIV surveillance in Ireland: improving HIV knowledge to target prevention |
title_full | Integration of a recent infection testing algorithm into HIV surveillance in Ireland: improving HIV knowledge to target prevention |
title_fullStr | Integration of a recent infection testing algorithm into HIV surveillance in Ireland: improving HIV knowledge to target prevention |
title_full_unstemmed | Integration of a recent infection testing algorithm into HIV surveillance in Ireland: improving HIV knowledge to target prevention |
title_short | Integration of a recent infection testing algorithm into HIV surveillance in Ireland: improving HIV knowledge to target prevention |
title_sort | integration of a recent infection testing algorithm into hiv surveillance in ireland: improving hiv knowledge to target prevention |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6518489/ https://www.ncbi.nlm.nih.gov/pubmed/30869051 http://dx.doi.org/10.1017/S0950268819000244 |
work_keys_str_mv | AT robinsone integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention AT moranj integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention AT odonnellk integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention AT hassanj integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention AT tuiteh integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention AT enniso integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention AT cooneyf integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention AT nugente integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention AT prestonl integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention AT odeas integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention AT doyles integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention AT keatings integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention AT connellj integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention AT degascunc integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention AT igoed integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention |