Cargando…

Integration of a recent infection testing algorithm into HIV surveillance in Ireland: improving HIV knowledge to target prevention

Recent infection testing algorithms (RITA) for HIV combine serological assays with epidemiological data to determine likely recent infections, indicators of ongoing transmission. In 2016, we integrated RITA into national HIV surveillance in Ireland to better inform HIV prevention interventions. We d...

Descripción completa

Detalles Bibliográficos
Autores principales: Robinson, E., Moran, J., O'Donnell, K., Hassan, J., Tuite, H., Ennis, O., Cooney, F., Nugent, E., Preston, L., O'Dea, S., Doyle, S., Keating, S., Connell, J., De Gascun, C., Igoe, D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cambridge University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6518489/
https://www.ncbi.nlm.nih.gov/pubmed/30869051
http://dx.doi.org/10.1017/S0950268819000244
_version_ 1783418460119760896
author Robinson, E.
Moran, J.
O'Donnell, K.
Hassan, J.
Tuite, H.
Ennis, O.
Cooney, F.
Nugent, E.
Preston, L.
O'Dea, S.
Doyle, S.
Keating, S.
Connell, J.
De Gascun, C.
Igoe, D.
author_facet Robinson, E.
Moran, J.
O'Donnell, K.
Hassan, J.
Tuite, H.
Ennis, O.
Cooney, F.
Nugent, E.
Preston, L.
O'Dea, S.
Doyle, S.
Keating, S.
Connell, J.
De Gascun, C.
Igoe, D.
author_sort Robinson, E.
collection PubMed
description Recent infection testing algorithms (RITA) for HIV combine serological assays with epidemiological data to determine likely recent infections, indicators of ongoing transmission. In 2016, we integrated RITA into national HIV surveillance in Ireland to better inform HIV prevention interventions. We determined the avidity index (AI) of new HIV diagnoses and linked the results with data captured in the national infectious disease reporting system. RITA classified a diagnosis as recent based on an AI < 1.5, unless epidemiological criteria (CD4 count <200 cells/mm(3); viral load <400 copies/ml; the presence of AIDS-defining illness; prior antiretroviral therapy use) indicated a potential false-recent result. Of 508 diagnoses in 2016, we linked 448 (88.1%) to an avidity test result. RITA classified 12.5% of diagnoses as recent, with the highest proportion (26.3%) amongst people who inject drugs. On multivariable logistic regression recent infection was more likely with a concurrent sexually transmitted infection (aOR 2.59; 95% CI 1.04–6.45). Data were incomplete for at least one RITA criterion in 48% of cases. The study demonstrated the feasibility of integrating RITA into routine surveillance and showed some ongoing HIV transmission. To improve the interpretation of RITA, further efforts are required to improve completeness of the required epidemiological data.
format Online
Article
Text
id pubmed-6518489
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Cambridge University Press
record_format MEDLINE/PubMed
spelling pubmed-65184892019-06-04 Integration of a recent infection testing algorithm into HIV surveillance in Ireland: improving HIV knowledge to target prevention Robinson, E. Moran, J. O'Donnell, K. Hassan, J. Tuite, H. Ennis, O. Cooney, F. Nugent, E. Preston, L. O'Dea, S. Doyle, S. Keating, S. Connell, J. De Gascun, C. Igoe, D. Epidemiol Infect Original Paper Recent infection testing algorithms (RITA) for HIV combine serological assays with epidemiological data to determine likely recent infections, indicators of ongoing transmission. In 2016, we integrated RITA into national HIV surveillance in Ireland to better inform HIV prevention interventions. We determined the avidity index (AI) of new HIV diagnoses and linked the results with data captured in the national infectious disease reporting system. RITA classified a diagnosis as recent based on an AI < 1.5, unless epidemiological criteria (CD4 count <200 cells/mm(3); viral load <400 copies/ml; the presence of AIDS-defining illness; prior antiretroviral therapy use) indicated a potential false-recent result. Of 508 diagnoses in 2016, we linked 448 (88.1%) to an avidity test result. RITA classified 12.5% of diagnoses as recent, with the highest proportion (26.3%) amongst people who inject drugs. On multivariable logistic regression recent infection was more likely with a concurrent sexually transmitted infection (aOR 2.59; 95% CI 1.04–6.45). Data were incomplete for at least one RITA criterion in 48% of cases. The study demonstrated the feasibility of integrating RITA into routine surveillance and showed some ongoing HIV transmission. To improve the interpretation of RITA, further efforts are required to improve completeness of the required epidemiological data. Cambridge University Press 2019-03-04 /pmc/articles/PMC6518489/ /pubmed/30869051 http://dx.doi.org/10.1017/S0950268819000244 Text en © The Author(s) 2019 http://creativecommons.org/licenses/by/4.0/ This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Paper
Robinson, E.
Moran, J.
O'Donnell, K.
Hassan, J.
Tuite, H.
Ennis, O.
Cooney, F.
Nugent, E.
Preston, L.
O'Dea, S.
Doyle, S.
Keating, S.
Connell, J.
De Gascun, C.
Igoe, D.
Integration of a recent infection testing algorithm into HIV surveillance in Ireland: improving HIV knowledge to target prevention
title Integration of a recent infection testing algorithm into HIV surveillance in Ireland: improving HIV knowledge to target prevention
title_full Integration of a recent infection testing algorithm into HIV surveillance in Ireland: improving HIV knowledge to target prevention
title_fullStr Integration of a recent infection testing algorithm into HIV surveillance in Ireland: improving HIV knowledge to target prevention
title_full_unstemmed Integration of a recent infection testing algorithm into HIV surveillance in Ireland: improving HIV knowledge to target prevention
title_short Integration of a recent infection testing algorithm into HIV surveillance in Ireland: improving HIV knowledge to target prevention
title_sort integration of a recent infection testing algorithm into hiv surveillance in ireland: improving hiv knowledge to target prevention
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6518489/
https://www.ncbi.nlm.nih.gov/pubmed/30869051
http://dx.doi.org/10.1017/S0950268819000244
work_keys_str_mv AT robinsone integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention
AT moranj integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention
AT odonnellk integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention
AT hassanj integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention
AT tuiteh integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention
AT enniso integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention
AT cooneyf integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention
AT nugente integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention
AT prestonl integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention
AT odeas integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention
AT doyles integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention
AT keatings integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention
AT connellj integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention
AT degascunc integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention
AT igoed integrationofarecentinfectiontestingalgorithmintohivsurveillanceinirelandimprovinghivknowledgetotargetprevention