Cargando…
Time series analysis of human brucellosis in mainland China by using Elman and Jordan recurrent neural networks
BACKGROUND: Establishing epidemiological models and conducting predictions seems to be useful for the prevention and control of human brucellosis. Autoregressive integrated moving average (ARIMA) models can capture the long-term trends and the periodic variations in time series. However, these model...
Autores principales: | Wu, Wei, An, Shu-Yi, Guan, Peng, Huang, De-Sheng, Zhou, Bao-Sen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6518525/ https://www.ncbi.nlm.nih.gov/pubmed/31088391 http://dx.doi.org/10.1186/s12879-019-4028-x |
Ejemplares similares
-
Financial Time Series Prediction Using Elman Recurrent Random Neural Networks
por: Wang, Jie, et al.
Publicado: (2016) -
Predictive study of tuberculosis incidence by time series method and Elman neural network in Kashgar, China
por: Zheng, Yanling, et al.
Publicado: (2021) -
Comparison of ARIMA model and XGBoost model for prediction of human brucellosis in mainland China: a time-series study
por: Alim, Mirxat, et al.
Publicado: (2020) -
Design of optimal Elman Recurrent Neural Network based prediction approach for biofuel production
por: Kumar, N. Paramesh, et al.
Publicado: (2023) -
Numerical Analysis of Modeling Based on Improved Elman Neural Network
por: Jie, Shao, et al.
Publicado: (2014)