Cargando…

Multiplexed kit based on Luminex technology and achievements in synthetic biology discriminates Zika, chikungunya, and dengue viruses in mosquitoes

BACKGROUND: The global expansion of dengue (DENV), chikungunya (CHIKV), and Zika viruses (ZIKV) is having a serious impact on public health. Because these arboviruses are transmitted by the same mosquito species and co-circulate in the same area, a sensitive diagnostic assay that detects them togeth...

Descripción completa

Detalles Bibliográficos
Autores principales: Glushakova, Lyudmyla G., Alto, Barry W., Kim, Myong-Sang, Hutter, Daniel, Bradley, Andrea, Bradley, Kevin M., Burkett-Cadena, Nathan D., Benner, Steven A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6518713/
https://www.ncbi.nlm.nih.gov/pubmed/31088375
http://dx.doi.org/10.1186/s12879-019-3998-z
Descripción
Sumario:BACKGROUND: The global expansion of dengue (DENV), chikungunya (CHIKV), and Zika viruses (ZIKV) is having a serious impact on public health. Because these arboviruses are transmitted by the same mosquito species and co-circulate in the same area, a sensitive diagnostic assay that detects them together, with discrimination, is needed. METHODS: We present here a diagnostics panel based on reverse transcription-PCR amplification of viral RNA and an xMap Luminex architecture involving direct hybridization of PCRamplicons and virus-specific probes. Two DNA innovations (“artificially expanded genetic information systems”, AEGIS, and “self-avoiding molecular recognition systems”, SAMRS) increase the hybridization sensitivity on Luminex microspheres and PCR specificity of the multiplex assay compared to the standard approach (standard nucleotides). RESULTS: The diagnostics panel detects, if they are present, these viruses with a resolution of 20 genome equivalents (DENV1), or 10 (DENV3–4, CHIKV) and 80 (DENV2, ZIKV) genome equivalents per assay. It identifies ZIKV, CHIKV and DENV RNAs in a single infected mosquito, in mosquito pools comprised of 5 to 50 individuals, and mosquito saliva (ZIKV, CHIKV, and DENV2). Infected mosquitoes and saliva were also collected on a cationic surface (Q-paper), which binds mosquito and viral nucleic acids electrostatically. All samples from infected mosquitoes displayed only target-specific signals; signals from non-infected samples were at background levels. CONCLUSIONS: Our results provide an efficient and multiplex tool that may be used for surveillance of emerging mosquito-borne pathogens which aids targeted mosquito control in areas at high risk for transmission. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12879-019-3998-z) contains supplementary material, which is available to authorized users.