Cargando…

Application of an interspinous process device after minimally invasive lumbar decompression could lead to stress redistribution at the pars interarticularis: a finite element analysis

BACKGROUND: An interspinous process device, the Device for Intervertebral Assisted Motion (DIAM™) designed to treat lumbar neurogenic disease secondary to the lumbar spinal stenosis, it provides dynamic stabilization after minimally invasive (MI) lumbar decompression. The current study was conducted...

Descripción completa

Detalles Bibliográficos
Autores principales: Lo, Hao-Ju, Chen, Chen-Sheng, Chen, Hung-Ming, Yang, Sai-Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6518805/
https://www.ncbi.nlm.nih.gov/pubmed/31092237
http://dx.doi.org/10.1186/s12891-019-2565-5
Descripción
Sumario:BACKGROUND: An interspinous process device, the Device for Intervertebral Assisted Motion (DIAM™) designed to treat lumbar neurogenic disease secondary to the lumbar spinal stenosis, it provides dynamic stabilization after minimally invasive (MI) lumbar decompression. The current study was conducted using an experimentally validated L1-L5 spinal finite element model (FEM) to evaluate the limited decompression on range of motion (ROM) and stress distribution on a neural arch implanted with the DIAM. METHODS: The study simulated bilateral laminotomies with partial discectomy at L3-L4, as well as unilateral and bilateral laminotomies with partial discectomy combined with implementation of the DIAM at L3-L4. The ROM and maximum von Mises stresses in flexion, extension, lateral bending, and axial torsion were analyzed in response to the hybrid protocol in comparison with the intact model. RESULTS: The investigation revealed that decreased ROM, intradiscal stress, and facet joint force at the implant level, but considerably increased stress at the pars interarticularis were found during flexion and torsion at the L4, as well as during extension, lateral bending, and torsion at the L3, when the DIAM was implanted compared with the defect model. CONCLUSION: The results demonstrate that the DIAM may be beneficial in reducing the symptoms of stress-induced low back pain. Nevertheless, the results also suggest that a surgeon should be cognizant of the stress redistribution at the pars interarticularis results from MI decompression plus the application of the interspinous process device.