Cargando…

Biocatalytic Production of Amino Carbohydrates through Oxidoreductase and Transaminase Cascades

Plant‐derived carbohydrates are an abundant renewable resource. Transformation of carbohydrates into new products, including amine‐functionalized building blocks for biomaterials applications, can lower reliance on fossil resources. Herein, biocatalytic production routes to amino carbohydrates, incl...

Descripción completa

Detalles Bibliográficos
Autores principales: Aumala, Ville, Mollerup, Filip, Jurak, Edita, Blume, Fabian, Karppi, Johanna, Koistinen, Antti E., Schuiten, Eva, Voß, Moritz, Bornscheuer, Uwe, Deska, Jan, Master, Emma R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6519198/
https://www.ncbi.nlm.nih.gov/pubmed/30589228
http://dx.doi.org/10.1002/cssc.201802580
Descripción
Sumario:Plant‐derived carbohydrates are an abundant renewable resource. Transformation of carbohydrates into new products, including amine‐functionalized building blocks for biomaterials applications, can lower reliance on fossil resources. Herein, biocatalytic production routes to amino carbohydrates, including oligosaccharides, are demonstrated. In each case, two‐step biocatalysis was performed to functionalize d‐galactose‐containing carbohydrates by employing the galactose oxidase from Fusarium graminearum or a pyranose dehydrogenase from Agaricus bisporus followed by the ω‐transaminase from Chromobacterium violaceum (Cvi‐ω‐TA). Formation of 6‐amino‐6‐deoxy‐d‐galactose, 2‐amino‐2‐deoxy‐d‐galactose, and 2‐amino‐2‐deoxy‐6‐aldo‐d‐galactose was confirmed by mass spectrometry. The activity of Cvi‐ω‐TA was highest towards 6‐aldo‐d‐galactose, for which the highest yield of 6‐amino‐6‐deoxy‐d‐galactose (67 %) was achieved in reactions permitting simultaneous oxidation of d‐galactose and transamination of the resulting 6‐aldo‐d‐galactose.