Cargando…
Metal‐Organic Frameworks as Catalyst Supports: Influence of Lattice Disorder on Metal Nanoparticle Formation
Because of their high tunability and surface area, metal‐organic frameworks (MOFs) show great promise as supports for metal nanoparticles. Depending on the synthesis route, MOFs may contain defects. Here, we show that highly crystalline MIL‐100(Fe) and disordered Basolite® F300, with identical iron...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6519236/ https://www.ncbi.nlm.nih.gov/pubmed/29709084 http://dx.doi.org/10.1002/chem.201800694 |
_version_ | 1783418604529647616 |
---|---|
author | Rivera‐Torrente, Miguel Filez, Matthias Hardian, Rifan Reynolds, Emily Seoane, Beatriz Coulet, Marie‐Vanessa Oropeza Palacio, Freddy E. Hofmann, Jan P. Fischer, Roland A. Goodwin, Andrew L. Llewellyn, Philip L. Weckhuysen, Bert M. |
author_facet | Rivera‐Torrente, Miguel Filez, Matthias Hardian, Rifan Reynolds, Emily Seoane, Beatriz Coulet, Marie‐Vanessa Oropeza Palacio, Freddy E. Hofmann, Jan P. Fischer, Roland A. Goodwin, Andrew L. Llewellyn, Philip L. Weckhuysen, Bert M. |
author_sort | Rivera‐Torrente, Miguel |
collection | PubMed |
description | Because of their high tunability and surface area, metal‐organic frameworks (MOFs) show great promise as supports for metal nanoparticles. Depending on the synthesis route, MOFs may contain defects. Here, we show that highly crystalline MIL‐100(Fe) and disordered Basolite® F300, with identical iron 1,3,5‐benzenetricarboxylate composition, exhibit very divergent properties when used as a support for Pd nanoparticle deposition. While MIL‐100(Fe) shows a regular MTN‐zeotype crystal structure with two types of cages, Basolite® F300 lacks long‐range order beyond 8 Å and has a single‐pore system. The medium‐range configurational linker‐node disorder in Basolite® F300 results in a reduced number of Lewis acid sites, yielding more hydrophobic surface properties compared to hydrophilic MIL‐100(Fe). The hydrophilic/hydrophobic nature of MIL‐100(Fe) and Basolite® F300 impacts the amount of Pd and particle size distribution of Pd nanoparticles deposited during colloidal synthesis and dry impregnation methods, respectively. It is suggested that polar (apolar) solvents/precursors attractively interact with hydrophilic (hydrophobic) MOF surfaces, allowing tools at hand to increase the level of control over, for example, the nanoparticle size distribution. |
format | Online Article Text |
id | pubmed-6519236 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-65192362019-05-21 Metal‐Organic Frameworks as Catalyst Supports: Influence of Lattice Disorder on Metal Nanoparticle Formation Rivera‐Torrente, Miguel Filez, Matthias Hardian, Rifan Reynolds, Emily Seoane, Beatriz Coulet, Marie‐Vanessa Oropeza Palacio, Freddy E. Hofmann, Jan P. Fischer, Roland A. Goodwin, Andrew L. Llewellyn, Philip L. Weckhuysen, Bert M. Chemistry Full Papers Because of their high tunability and surface area, metal‐organic frameworks (MOFs) show great promise as supports for metal nanoparticles. Depending on the synthesis route, MOFs may contain defects. Here, we show that highly crystalline MIL‐100(Fe) and disordered Basolite® F300, with identical iron 1,3,5‐benzenetricarboxylate composition, exhibit very divergent properties when used as a support for Pd nanoparticle deposition. While MIL‐100(Fe) shows a regular MTN‐zeotype crystal structure with two types of cages, Basolite® F300 lacks long‐range order beyond 8 Å and has a single‐pore system. The medium‐range configurational linker‐node disorder in Basolite® F300 results in a reduced number of Lewis acid sites, yielding more hydrophobic surface properties compared to hydrophilic MIL‐100(Fe). The hydrophilic/hydrophobic nature of MIL‐100(Fe) and Basolite® F300 impacts the amount of Pd and particle size distribution of Pd nanoparticles deposited during colloidal synthesis and dry impregnation methods, respectively. It is suggested that polar (apolar) solvents/precursors attractively interact with hydrophilic (hydrophobic) MOF surfaces, allowing tools at hand to increase the level of control over, for example, the nanoparticle size distribution. John Wiley and Sons Inc. 2018-04-30 2018-05-23 /pmc/articles/PMC6519236/ /pubmed/29709084 http://dx.doi.org/10.1002/chem.201800694 Text en © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Full Papers Rivera‐Torrente, Miguel Filez, Matthias Hardian, Rifan Reynolds, Emily Seoane, Beatriz Coulet, Marie‐Vanessa Oropeza Palacio, Freddy E. Hofmann, Jan P. Fischer, Roland A. Goodwin, Andrew L. Llewellyn, Philip L. Weckhuysen, Bert M. Metal‐Organic Frameworks as Catalyst Supports: Influence of Lattice Disorder on Metal Nanoparticle Formation |
title | Metal‐Organic Frameworks as Catalyst Supports: Influence of Lattice Disorder on Metal Nanoparticle Formation |
title_full | Metal‐Organic Frameworks as Catalyst Supports: Influence of Lattice Disorder on Metal Nanoparticle Formation |
title_fullStr | Metal‐Organic Frameworks as Catalyst Supports: Influence of Lattice Disorder on Metal Nanoparticle Formation |
title_full_unstemmed | Metal‐Organic Frameworks as Catalyst Supports: Influence of Lattice Disorder on Metal Nanoparticle Formation |
title_short | Metal‐Organic Frameworks as Catalyst Supports: Influence of Lattice Disorder on Metal Nanoparticle Formation |
title_sort | metal‐organic frameworks as catalyst supports: influence of lattice disorder on metal nanoparticle formation |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6519236/ https://www.ncbi.nlm.nih.gov/pubmed/29709084 http://dx.doi.org/10.1002/chem.201800694 |
work_keys_str_mv | AT riveratorrentemiguel metalorganicframeworksascatalystsupportsinfluenceoflatticedisorderonmetalnanoparticleformation AT filezmatthias metalorganicframeworksascatalystsupportsinfluenceoflatticedisorderonmetalnanoparticleformation AT hardianrifan metalorganicframeworksascatalystsupportsinfluenceoflatticedisorderonmetalnanoparticleformation AT reynoldsemily metalorganicframeworksascatalystsupportsinfluenceoflatticedisorderonmetalnanoparticleformation AT seoanebeatriz metalorganicframeworksascatalystsupportsinfluenceoflatticedisorderonmetalnanoparticleformation AT couletmarievanessa metalorganicframeworksascatalystsupportsinfluenceoflatticedisorderonmetalnanoparticleformation AT oropezapalaciofreddye metalorganicframeworksascatalystsupportsinfluenceoflatticedisorderonmetalnanoparticleformation AT hofmannjanp metalorganicframeworksascatalystsupportsinfluenceoflatticedisorderonmetalnanoparticleformation AT fischerrolanda metalorganicframeworksascatalystsupportsinfluenceoflatticedisorderonmetalnanoparticleformation AT goodwinandrewl metalorganicframeworksascatalystsupportsinfluenceoflatticedisorderonmetalnanoparticleformation AT llewellynphilipl metalorganicframeworksascatalystsupportsinfluenceoflatticedisorderonmetalnanoparticleformation AT weckhuysenbertm metalorganicframeworksascatalystsupportsinfluenceoflatticedisorderonmetalnanoparticleformation |