Cargando…

Metal‐Organic Frameworks as Catalyst Supports: Influence of Lattice Disorder on Metal Nanoparticle Formation

Because of their high tunability and surface area, metal‐organic frameworks (MOFs) show great promise as supports for metal nanoparticles. Depending on the synthesis route, MOFs may contain defects. Here, we show that highly crystalline MIL‐100(Fe) and disordered Basolite® F300, with identical iron...

Descripción completa

Detalles Bibliográficos
Autores principales: Rivera‐Torrente, Miguel, Filez, Matthias, Hardian, Rifan, Reynolds, Emily, Seoane, Beatriz, Coulet, Marie‐Vanessa, Oropeza Palacio, Freddy E., Hofmann, Jan P., Fischer, Roland A., Goodwin, Andrew L., Llewellyn, Philip L., Weckhuysen, Bert M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6519236/
https://www.ncbi.nlm.nih.gov/pubmed/29709084
http://dx.doi.org/10.1002/chem.201800694
_version_ 1783418604529647616
author Rivera‐Torrente, Miguel
Filez, Matthias
Hardian, Rifan
Reynolds, Emily
Seoane, Beatriz
Coulet, Marie‐Vanessa
Oropeza Palacio, Freddy E.
Hofmann, Jan P.
Fischer, Roland A.
Goodwin, Andrew L.
Llewellyn, Philip L.
Weckhuysen, Bert M.
author_facet Rivera‐Torrente, Miguel
Filez, Matthias
Hardian, Rifan
Reynolds, Emily
Seoane, Beatriz
Coulet, Marie‐Vanessa
Oropeza Palacio, Freddy E.
Hofmann, Jan P.
Fischer, Roland A.
Goodwin, Andrew L.
Llewellyn, Philip L.
Weckhuysen, Bert M.
author_sort Rivera‐Torrente, Miguel
collection PubMed
description Because of their high tunability and surface area, metal‐organic frameworks (MOFs) show great promise as supports for metal nanoparticles. Depending on the synthesis route, MOFs may contain defects. Here, we show that highly crystalline MIL‐100(Fe) and disordered Basolite® F300, with identical iron 1,3,5‐benzenetricarboxylate composition, exhibit very divergent properties when used as a support for Pd nanoparticle deposition. While MIL‐100(Fe) shows a regular MTN‐zeotype crystal structure with two types of cages, Basolite® F300 lacks long‐range order beyond 8 Å and has a single‐pore system. The medium‐range configurational linker‐node disorder in Basolite® F300 results in a reduced number of Lewis acid sites, yielding more hydrophobic surface properties compared to hydrophilic MIL‐100(Fe). The hydrophilic/hydrophobic nature of MIL‐100(Fe) and Basolite® F300 impacts the amount of Pd and particle size distribution of Pd nanoparticles deposited during colloidal synthesis and dry impregnation methods, respectively. It is suggested that polar (apolar) solvents/precursors attractively interact with hydrophilic (hydrophobic) MOF surfaces, allowing tools at hand to increase the level of control over, for example, the nanoparticle size distribution.
format Online
Article
Text
id pubmed-6519236
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-65192362019-05-21 Metal‐Organic Frameworks as Catalyst Supports: Influence of Lattice Disorder on Metal Nanoparticle Formation Rivera‐Torrente, Miguel Filez, Matthias Hardian, Rifan Reynolds, Emily Seoane, Beatriz Coulet, Marie‐Vanessa Oropeza Palacio, Freddy E. Hofmann, Jan P. Fischer, Roland A. Goodwin, Andrew L. Llewellyn, Philip L. Weckhuysen, Bert M. Chemistry Full Papers Because of their high tunability and surface area, metal‐organic frameworks (MOFs) show great promise as supports for metal nanoparticles. Depending on the synthesis route, MOFs may contain defects. Here, we show that highly crystalline MIL‐100(Fe) and disordered Basolite® F300, with identical iron 1,3,5‐benzenetricarboxylate composition, exhibit very divergent properties when used as a support for Pd nanoparticle deposition. While MIL‐100(Fe) shows a regular MTN‐zeotype crystal structure with two types of cages, Basolite® F300 lacks long‐range order beyond 8 Å and has a single‐pore system. The medium‐range configurational linker‐node disorder in Basolite® F300 results in a reduced number of Lewis acid sites, yielding more hydrophobic surface properties compared to hydrophilic MIL‐100(Fe). The hydrophilic/hydrophobic nature of MIL‐100(Fe) and Basolite® F300 impacts the amount of Pd and particle size distribution of Pd nanoparticles deposited during colloidal synthesis and dry impregnation methods, respectively. It is suggested that polar (apolar) solvents/precursors attractively interact with hydrophilic (hydrophobic) MOF surfaces, allowing tools at hand to increase the level of control over, for example, the nanoparticle size distribution. John Wiley and Sons Inc. 2018-04-30 2018-05-23 /pmc/articles/PMC6519236/ /pubmed/29709084 http://dx.doi.org/10.1002/chem.201800694 Text en © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Full Papers
Rivera‐Torrente, Miguel
Filez, Matthias
Hardian, Rifan
Reynolds, Emily
Seoane, Beatriz
Coulet, Marie‐Vanessa
Oropeza Palacio, Freddy E.
Hofmann, Jan P.
Fischer, Roland A.
Goodwin, Andrew L.
Llewellyn, Philip L.
Weckhuysen, Bert M.
Metal‐Organic Frameworks as Catalyst Supports: Influence of Lattice Disorder on Metal Nanoparticle Formation
title Metal‐Organic Frameworks as Catalyst Supports: Influence of Lattice Disorder on Metal Nanoparticle Formation
title_full Metal‐Organic Frameworks as Catalyst Supports: Influence of Lattice Disorder on Metal Nanoparticle Formation
title_fullStr Metal‐Organic Frameworks as Catalyst Supports: Influence of Lattice Disorder on Metal Nanoparticle Formation
title_full_unstemmed Metal‐Organic Frameworks as Catalyst Supports: Influence of Lattice Disorder on Metal Nanoparticle Formation
title_short Metal‐Organic Frameworks as Catalyst Supports: Influence of Lattice Disorder on Metal Nanoparticle Formation
title_sort metal‐organic frameworks as catalyst supports: influence of lattice disorder on metal nanoparticle formation
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6519236/
https://www.ncbi.nlm.nih.gov/pubmed/29709084
http://dx.doi.org/10.1002/chem.201800694
work_keys_str_mv AT riveratorrentemiguel metalorganicframeworksascatalystsupportsinfluenceoflatticedisorderonmetalnanoparticleformation
AT filezmatthias metalorganicframeworksascatalystsupportsinfluenceoflatticedisorderonmetalnanoparticleformation
AT hardianrifan metalorganicframeworksascatalystsupportsinfluenceoflatticedisorderonmetalnanoparticleformation
AT reynoldsemily metalorganicframeworksascatalystsupportsinfluenceoflatticedisorderonmetalnanoparticleformation
AT seoanebeatriz metalorganicframeworksascatalystsupportsinfluenceoflatticedisorderonmetalnanoparticleformation
AT couletmarievanessa metalorganicframeworksascatalystsupportsinfluenceoflatticedisorderonmetalnanoparticleformation
AT oropezapalaciofreddye metalorganicframeworksascatalystsupportsinfluenceoflatticedisorderonmetalnanoparticleformation
AT hofmannjanp metalorganicframeworksascatalystsupportsinfluenceoflatticedisorderonmetalnanoparticleformation
AT fischerrolanda metalorganicframeworksascatalystsupportsinfluenceoflatticedisorderonmetalnanoparticleformation
AT goodwinandrewl metalorganicframeworksascatalystsupportsinfluenceoflatticedisorderonmetalnanoparticleformation
AT llewellynphilipl metalorganicframeworksascatalystsupportsinfluenceoflatticedisorderonmetalnanoparticleformation
AT weckhuysenbertm metalorganicframeworksascatalystsupportsinfluenceoflatticedisorderonmetalnanoparticleformation