Cargando…
Correlation‐adjusted regression survival scores for high‐dimensional variable selection
Background: The development of classification methods for personalized medicine is highly dependent on the identification of predictive genetic markers. In survival analysis, it is often necessary to discriminate between influential and noninfluential markers. It is common to perform univariate scre...
Autores principales: | Welchowski, Thomas, Zuber, Verena, Schmid, Matthias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6519238/ https://www.ncbi.nlm.nih.gov/pubmed/30793795 http://dx.doi.org/10.1002/sim.8116 |
Ejemplares similares
-
Benchmark of filter methods for feature selection in high-dimensional gene expression survival data
por: Bommert, Andrea, et al.
Publicado: (2021) -
Elastic Correlation Adjusted Regression (ECAR) scores for high dimensional variable importance measuring
por: Zhou, Yuan, et al.
Publicado: (2021) -
Unbiased Prediction and Feature Selection in High-Dimensional Survival Regression
por: Laimighofer, Michael, et al.
Publicado: (2016) -
The number needed to treat adjusted for explanatory variables in regression and survival analysis: Theory and application
por: Vancak, Valentin, et al.
Publicado: (2022) -
Sparse dimensionality reduction approaches in Mendelian randomisation with highly correlated exposures
por: Karageorgiou, Vasileios, et al.
Publicado: (2023)