Cargando…
Minimum sample size for developing a multivariable prediction model: PART II ‐ binary and time‐to‐event outcomes
When designing a study to develop a new prediction model with binary or time‐to‐event outcomes, researchers should ensure their sample size is adequate in terms of the number of participants (n) and outcome events (E) relative to the number of predictor parameters (p) considered for inclusion. We pr...
Autores principales: | Riley, Richard D, Snell, Kym IE, Ensor, Joie, Burke, Danielle L, Harrell Jr, Frank E, Moons, Karel GM, Collins, Gary S |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6519266/ https://www.ncbi.nlm.nih.gov/pubmed/30357870 http://dx.doi.org/10.1002/sim.7992 |
Ejemplares similares
-
Meta-analysis of prediction model performance across multiple
studies: Which scale helps ensure between-study normality for the
C-statistic and calibration measures?
por: Snell, Kym IE, et al.
Publicado: (2017) -
Multivariate meta-analysis of individual participant data helped externally validate the performance and implementation of a prediction model
por: Snell, Kym I.E., et al.
Publicado: (2016) -
Minimum sample size for developing a multivariable prediction model using multinomial logistic regression
por: Pate, Alexander, et al.
Publicado: (2023) -
Individual participant data meta‐analysis of continuous outcomes: A comparison of approaches for specifying and estimating one‐stage models
por: Legha, Amardeep, et al.
Publicado: (2018) -
External validation of clinical prediction models: simulation-based sample size calculations were more reliable than rules-of-thumb
por: Snell, Kym I.E., et al.
Publicado: (2021)