Cargando…
Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants
BACKGROUND: Identifying people at risk of cardiovascular diseases (CVD) is a cornerstone of preventative cardiology. Risk prediction models currently recommended by clinical guidelines are typically based on a limited number of predictors with sub-optimal performance across all patient groups. Data-...
Autores principales: | Alaa, Ahmed M., Bolton, Thomas, Di Angelantonio, Emanuele, Rudd, James H. F., van der Schaar, Mihaela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6519796/ https://www.ncbi.nlm.nih.gov/pubmed/31091238 http://dx.doi.org/10.1371/journal.pone.0213653 |
Ejemplares similares
-
Prognostication and Risk Factors for Cystic Fibrosis via Automated Machine Learning
por: Alaa, Ahmed M., et al.
Publicado: (2018) -
Quality control and removal of technical variation of NMR metabolic biomarker data in ~120,000 UK Biobank participants
por: Ritchie, Scott C., et al.
Publicado: (2023) -
CPAS: the UK’s national machine learning-based hospital capacity planning system for COVID-19
por: Qian, Zhaozhi, et al.
Publicado: (2020) -
Incident cardiovascular events and imaging phenotypes in UK Biobank participants with past cancer
por: Raisi-Estabragh, Zahra, et al.
Publicado: (2023) -
External validity of machine learning-based prognostic scores for cystic fibrosis: A retrospective study using the UK and Canadian registries
por: Qin, Yuchao, et al.
Publicado: (2023)