Cargando…

Genomic SEM Provides Insights into the Multivariate Genetic Architecture of Complex Traits

Genetic correlations estimated from GWAS reveal pervasive pleiotropy across a wide variety of phenotypes. We introduce genomic structural equation modeling (Genomic SEM), a multivariate method for analyzing the joint genetic architecture of complex traits. Genomic SEM synthesizes genetic correlation...

Descripción completa

Detalles Bibliográficos
Autores principales: Grotzinger, Andrew D., Rhemtulla, Mijke, de Vlaming, Ronald, Ritchie, Stuart J., Mallard, Travis T., Hill, W. David, Ip, Hill F., Marioni, Riccardo E., McIntosh, Andrew M., Deary, Ian J., Koellinger, Philipp D., Harden, K. Paige, Nivard, Michel G., Tucker-Drob, Elliot M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520146/
https://www.ncbi.nlm.nih.gov/pubmed/30962613
http://dx.doi.org/10.1038/s41562-019-0566-x
_version_ 1783418706113593344
author Grotzinger, Andrew D.
Rhemtulla, Mijke
de Vlaming, Ronald
Ritchie, Stuart J.
Mallard, Travis T.
Hill, W. David
Ip, Hill F.
Marioni, Riccardo E.
McIntosh, Andrew M.
Deary, Ian J.
Koellinger, Philipp D.
Harden, K. Paige
Nivard, Michel G.
Tucker-Drob, Elliot M.
author_facet Grotzinger, Andrew D.
Rhemtulla, Mijke
de Vlaming, Ronald
Ritchie, Stuart J.
Mallard, Travis T.
Hill, W. David
Ip, Hill F.
Marioni, Riccardo E.
McIntosh, Andrew M.
Deary, Ian J.
Koellinger, Philipp D.
Harden, K. Paige
Nivard, Michel G.
Tucker-Drob, Elliot M.
author_sort Grotzinger, Andrew D.
collection PubMed
description Genetic correlations estimated from GWAS reveal pervasive pleiotropy across a wide variety of phenotypes. We introduce genomic structural equation modeling (Genomic SEM), a multivariate method for analyzing the joint genetic architecture of complex traits. Genomic SEM synthesizes genetic correlations and SNP-heritabilities inferred from GWAS summary statistics of individual traits from samples with varying and unknown degrees of overlap. Genomic SEM can be used to model multivariate genetic associations among phenotypes, identify variants with effects on general dimensions of cross-trait liability, calculate more predictive polygenic scores, and identify loci that cause divergence between traits. We demonstrate several applications of Genomic SEM, including a joint analysis of summary statistics from five psychiatric traits. We identify 27 independent SNPs not previously identified in the contributing univariate GWASs. Polygenic scores from Genomic SEM consistently outperform those from univariate GWAS. Genomic SEM is flexible, open ended, and allows for continuous innovation in multivariate genetic analysis.
format Online
Article
Text
id pubmed-6520146
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-65201462019-10-08 Genomic SEM Provides Insights into the Multivariate Genetic Architecture of Complex Traits Grotzinger, Andrew D. Rhemtulla, Mijke de Vlaming, Ronald Ritchie, Stuart J. Mallard, Travis T. Hill, W. David Ip, Hill F. Marioni, Riccardo E. McIntosh, Andrew M. Deary, Ian J. Koellinger, Philipp D. Harden, K. Paige Nivard, Michel G. Tucker-Drob, Elliot M. Nat Hum Behav Article Genetic correlations estimated from GWAS reveal pervasive pleiotropy across a wide variety of phenotypes. We introduce genomic structural equation modeling (Genomic SEM), a multivariate method for analyzing the joint genetic architecture of complex traits. Genomic SEM synthesizes genetic correlations and SNP-heritabilities inferred from GWAS summary statistics of individual traits from samples with varying and unknown degrees of overlap. Genomic SEM can be used to model multivariate genetic associations among phenotypes, identify variants with effects on general dimensions of cross-trait liability, calculate more predictive polygenic scores, and identify loci that cause divergence between traits. We demonstrate several applications of Genomic SEM, including a joint analysis of summary statistics from five psychiatric traits. We identify 27 independent SNPs not previously identified in the contributing univariate GWASs. Polygenic scores from Genomic SEM consistently outperform those from univariate GWAS. Genomic SEM is flexible, open ended, and allows for continuous innovation in multivariate genetic analysis. 2019-04-08 2019-05 /pmc/articles/PMC6520146/ /pubmed/30962613 http://dx.doi.org/10.1038/s41562-019-0566-x Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Grotzinger, Andrew D.
Rhemtulla, Mijke
de Vlaming, Ronald
Ritchie, Stuart J.
Mallard, Travis T.
Hill, W. David
Ip, Hill F.
Marioni, Riccardo E.
McIntosh, Andrew M.
Deary, Ian J.
Koellinger, Philipp D.
Harden, K. Paige
Nivard, Michel G.
Tucker-Drob, Elliot M.
Genomic SEM Provides Insights into the Multivariate Genetic Architecture of Complex Traits
title Genomic SEM Provides Insights into the Multivariate Genetic Architecture of Complex Traits
title_full Genomic SEM Provides Insights into the Multivariate Genetic Architecture of Complex Traits
title_fullStr Genomic SEM Provides Insights into the Multivariate Genetic Architecture of Complex Traits
title_full_unstemmed Genomic SEM Provides Insights into the Multivariate Genetic Architecture of Complex Traits
title_short Genomic SEM Provides Insights into the Multivariate Genetic Architecture of Complex Traits
title_sort genomic sem provides insights into the multivariate genetic architecture of complex traits
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520146/
https://www.ncbi.nlm.nih.gov/pubmed/30962613
http://dx.doi.org/10.1038/s41562-019-0566-x
work_keys_str_mv AT grotzingerandrewd genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits
AT rhemtullamijke genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits
AT devlamingronald genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits
AT ritchiestuartj genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits
AT mallardtravist genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits
AT hillwdavid genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits
AT iphillf genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits
AT marioniriccardoe genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits
AT mcintoshandrewm genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits
AT dearyianj genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits
AT koellingerphilippd genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits
AT hardenkpaige genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits
AT nivardmichelg genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits
AT tuckerdrobelliotm genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits