Cargando…
Genomic SEM Provides Insights into the Multivariate Genetic Architecture of Complex Traits
Genetic correlations estimated from GWAS reveal pervasive pleiotropy across a wide variety of phenotypes. We introduce genomic structural equation modeling (Genomic SEM), a multivariate method for analyzing the joint genetic architecture of complex traits. Genomic SEM synthesizes genetic correlation...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520146/ https://www.ncbi.nlm.nih.gov/pubmed/30962613 http://dx.doi.org/10.1038/s41562-019-0566-x |
_version_ | 1783418706113593344 |
---|---|
author | Grotzinger, Andrew D. Rhemtulla, Mijke de Vlaming, Ronald Ritchie, Stuart J. Mallard, Travis T. Hill, W. David Ip, Hill F. Marioni, Riccardo E. McIntosh, Andrew M. Deary, Ian J. Koellinger, Philipp D. Harden, K. Paige Nivard, Michel G. Tucker-Drob, Elliot M. |
author_facet | Grotzinger, Andrew D. Rhemtulla, Mijke de Vlaming, Ronald Ritchie, Stuart J. Mallard, Travis T. Hill, W. David Ip, Hill F. Marioni, Riccardo E. McIntosh, Andrew M. Deary, Ian J. Koellinger, Philipp D. Harden, K. Paige Nivard, Michel G. Tucker-Drob, Elliot M. |
author_sort | Grotzinger, Andrew D. |
collection | PubMed |
description | Genetic correlations estimated from GWAS reveal pervasive pleiotropy across a wide variety of phenotypes. We introduce genomic structural equation modeling (Genomic SEM), a multivariate method for analyzing the joint genetic architecture of complex traits. Genomic SEM synthesizes genetic correlations and SNP-heritabilities inferred from GWAS summary statistics of individual traits from samples with varying and unknown degrees of overlap. Genomic SEM can be used to model multivariate genetic associations among phenotypes, identify variants with effects on general dimensions of cross-trait liability, calculate more predictive polygenic scores, and identify loci that cause divergence between traits. We demonstrate several applications of Genomic SEM, including a joint analysis of summary statistics from five psychiatric traits. We identify 27 independent SNPs not previously identified in the contributing univariate GWASs. Polygenic scores from Genomic SEM consistently outperform those from univariate GWAS. Genomic SEM is flexible, open ended, and allows for continuous innovation in multivariate genetic analysis. |
format | Online Article Text |
id | pubmed-6520146 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-65201462019-10-08 Genomic SEM Provides Insights into the Multivariate Genetic Architecture of Complex Traits Grotzinger, Andrew D. Rhemtulla, Mijke de Vlaming, Ronald Ritchie, Stuart J. Mallard, Travis T. Hill, W. David Ip, Hill F. Marioni, Riccardo E. McIntosh, Andrew M. Deary, Ian J. Koellinger, Philipp D. Harden, K. Paige Nivard, Michel G. Tucker-Drob, Elliot M. Nat Hum Behav Article Genetic correlations estimated from GWAS reveal pervasive pleiotropy across a wide variety of phenotypes. We introduce genomic structural equation modeling (Genomic SEM), a multivariate method for analyzing the joint genetic architecture of complex traits. Genomic SEM synthesizes genetic correlations and SNP-heritabilities inferred from GWAS summary statistics of individual traits from samples with varying and unknown degrees of overlap. Genomic SEM can be used to model multivariate genetic associations among phenotypes, identify variants with effects on general dimensions of cross-trait liability, calculate more predictive polygenic scores, and identify loci that cause divergence between traits. We demonstrate several applications of Genomic SEM, including a joint analysis of summary statistics from five psychiatric traits. We identify 27 independent SNPs not previously identified in the contributing univariate GWASs. Polygenic scores from Genomic SEM consistently outperform those from univariate GWAS. Genomic SEM is flexible, open ended, and allows for continuous innovation in multivariate genetic analysis. 2019-04-08 2019-05 /pmc/articles/PMC6520146/ /pubmed/30962613 http://dx.doi.org/10.1038/s41562-019-0566-x Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Grotzinger, Andrew D. Rhemtulla, Mijke de Vlaming, Ronald Ritchie, Stuart J. Mallard, Travis T. Hill, W. David Ip, Hill F. Marioni, Riccardo E. McIntosh, Andrew M. Deary, Ian J. Koellinger, Philipp D. Harden, K. Paige Nivard, Michel G. Tucker-Drob, Elliot M. Genomic SEM Provides Insights into the Multivariate Genetic Architecture of Complex Traits |
title | Genomic SEM Provides Insights into the Multivariate Genetic Architecture of Complex Traits |
title_full | Genomic SEM Provides Insights into the Multivariate Genetic Architecture of Complex Traits |
title_fullStr | Genomic SEM Provides Insights into the Multivariate Genetic Architecture of Complex Traits |
title_full_unstemmed | Genomic SEM Provides Insights into the Multivariate Genetic Architecture of Complex Traits |
title_short | Genomic SEM Provides Insights into the Multivariate Genetic Architecture of Complex Traits |
title_sort | genomic sem provides insights into the multivariate genetic architecture of complex traits |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520146/ https://www.ncbi.nlm.nih.gov/pubmed/30962613 http://dx.doi.org/10.1038/s41562-019-0566-x |
work_keys_str_mv | AT grotzingerandrewd genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits AT rhemtullamijke genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits AT devlamingronald genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits AT ritchiestuartj genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits AT mallardtravist genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits AT hillwdavid genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits AT iphillf genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits AT marioniriccardoe genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits AT mcintoshandrewm genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits AT dearyianj genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits AT koellingerphilippd genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits AT hardenkpaige genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits AT nivardmichelg genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits AT tuckerdrobelliotm genomicsemprovidesinsightsintothemultivariategeneticarchitectureofcomplextraits |