Cargando…

Biomimetic electromechanical stimulation to maintain adult myocardial slices in vitro

Adult cardiac tissue undergoes a rapid process of dedifferentiation when cultured outside the body. The in vivo environment, particularly constant electromechanical stimulation, is fundamental to the regulation of cardiac structure and function. We investigated the role of electromechanical stimulat...

Descripción completa

Detalles Bibliográficos
Autores principales: Watson, Samuel A., Duff, James, Bardi, Ifigeneia, Zabielska, Magdalena, Atanur, Santosh S., Jabbour, Richard J., Simon, André, Tomas, Alejandra, Smolenski, Ryszard T., Harding, Sian E., Perbellini, Filippo, Terracciano, Cesare M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520377/
https://www.ncbi.nlm.nih.gov/pubmed/31092830
http://dx.doi.org/10.1038/s41467-019-10175-3
_version_ 1783418729679290368
author Watson, Samuel A.
Duff, James
Bardi, Ifigeneia
Zabielska, Magdalena
Atanur, Santosh S.
Jabbour, Richard J.
Simon, André
Tomas, Alejandra
Smolenski, Ryszard T.
Harding, Sian E.
Perbellini, Filippo
Terracciano, Cesare M.
author_facet Watson, Samuel A.
Duff, James
Bardi, Ifigeneia
Zabielska, Magdalena
Atanur, Santosh S.
Jabbour, Richard J.
Simon, André
Tomas, Alejandra
Smolenski, Ryszard T.
Harding, Sian E.
Perbellini, Filippo
Terracciano, Cesare M.
author_sort Watson, Samuel A.
collection PubMed
description Adult cardiac tissue undergoes a rapid process of dedifferentiation when cultured outside the body. The in vivo environment, particularly constant electromechanical stimulation, is fundamental to the regulation of cardiac structure and function. We investigated the role of electromechanical stimulation in preventing culture-induced dedifferentiation of adult cardiac tissue using rat, rabbit and human heart failure myocardial slices. Here we report that the application of a preload equivalent to sarcomere length (SL) = 2.2 μm is optimal for the maintenance of rat myocardial slice structural, functional and transcriptional properties at 24 h. Gene sets associated with the preservation of structure and function are activated, while gene sets involved in dedifferentiation are suppressed. The maximum contractility of human heart failure myocardial slices at 24 h is also optimally maintained at SL = 2.2 μm. Rabbit myocardial slices cultured at SL = 2.2 μm remain stable for 5 days. This approach substantially prolongs the culture of adult cardiac tissue in vitro.
format Online
Article
Text
id pubmed-6520377
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-65203772019-05-20 Biomimetic electromechanical stimulation to maintain adult myocardial slices in vitro Watson, Samuel A. Duff, James Bardi, Ifigeneia Zabielska, Magdalena Atanur, Santosh S. Jabbour, Richard J. Simon, André Tomas, Alejandra Smolenski, Ryszard T. Harding, Sian E. Perbellini, Filippo Terracciano, Cesare M. Nat Commun Article Adult cardiac tissue undergoes a rapid process of dedifferentiation when cultured outside the body. The in vivo environment, particularly constant electromechanical stimulation, is fundamental to the regulation of cardiac structure and function. We investigated the role of electromechanical stimulation in preventing culture-induced dedifferentiation of adult cardiac tissue using rat, rabbit and human heart failure myocardial slices. Here we report that the application of a preload equivalent to sarcomere length (SL) = 2.2 μm is optimal for the maintenance of rat myocardial slice structural, functional and transcriptional properties at 24 h. Gene sets associated with the preservation of structure and function are activated, while gene sets involved in dedifferentiation are suppressed. The maximum contractility of human heart failure myocardial slices at 24 h is also optimally maintained at SL = 2.2 μm. Rabbit myocardial slices cultured at SL = 2.2 μm remain stable for 5 days. This approach substantially prolongs the culture of adult cardiac tissue in vitro. Nature Publishing Group UK 2019-05-15 /pmc/articles/PMC6520377/ /pubmed/31092830 http://dx.doi.org/10.1038/s41467-019-10175-3 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Watson, Samuel A.
Duff, James
Bardi, Ifigeneia
Zabielska, Magdalena
Atanur, Santosh S.
Jabbour, Richard J.
Simon, André
Tomas, Alejandra
Smolenski, Ryszard T.
Harding, Sian E.
Perbellini, Filippo
Terracciano, Cesare M.
Biomimetic electromechanical stimulation to maintain adult myocardial slices in vitro
title Biomimetic electromechanical stimulation to maintain adult myocardial slices in vitro
title_full Biomimetic electromechanical stimulation to maintain adult myocardial slices in vitro
title_fullStr Biomimetic electromechanical stimulation to maintain adult myocardial slices in vitro
title_full_unstemmed Biomimetic electromechanical stimulation to maintain adult myocardial slices in vitro
title_short Biomimetic electromechanical stimulation to maintain adult myocardial slices in vitro
title_sort biomimetic electromechanical stimulation to maintain adult myocardial slices in vitro
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520377/
https://www.ncbi.nlm.nih.gov/pubmed/31092830
http://dx.doi.org/10.1038/s41467-019-10175-3
work_keys_str_mv AT watsonsamuela biomimeticelectromechanicalstimulationtomaintainadultmyocardialslicesinvitro
AT duffjames biomimeticelectromechanicalstimulationtomaintainadultmyocardialslicesinvitro
AT bardiifigeneia biomimeticelectromechanicalstimulationtomaintainadultmyocardialslicesinvitro
AT zabielskamagdalena biomimeticelectromechanicalstimulationtomaintainadultmyocardialslicesinvitro
AT atanursantoshs biomimeticelectromechanicalstimulationtomaintainadultmyocardialslicesinvitro
AT jabbourrichardj biomimeticelectromechanicalstimulationtomaintainadultmyocardialslicesinvitro
AT simonandre biomimeticelectromechanicalstimulationtomaintainadultmyocardialslicesinvitro
AT tomasalejandra biomimeticelectromechanicalstimulationtomaintainadultmyocardialslicesinvitro
AT smolenskiryszardt biomimeticelectromechanicalstimulationtomaintainadultmyocardialslicesinvitro
AT hardingsiane biomimeticelectromechanicalstimulationtomaintainadultmyocardialslicesinvitro
AT perbellinifilippo biomimeticelectromechanicalstimulationtomaintainadultmyocardialslicesinvitro
AT terraccianocesarem biomimeticelectromechanicalstimulationtomaintainadultmyocardialslicesinvitro