Cargando…
Biomimetic electromechanical stimulation to maintain adult myocardial slices in vitro
Adult cardiac tissue undergoes a rapid process of dedifferentiation when cultured outside the body. The in vivo environment, particularly constant electromechanical stimulation, is fundamental to the regulation of cardiac structure and function. We investigated the role of electromechanical stimulat...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520377/ https://www.ncbi.nlm.nih.gov/pubmed/31092830 http://dx.doi.org/10.1038/s41467-019-10175-3 |
_version_ | 1783418729679290368 |
---|---|
author | Watson, Samuel A. Duff, James Bardi, Ifigeneia Zabielska, Magdalena Atanur, Santosh S. Jabbour, Richard J. Simon, André Tomas, Alejandra Smolenski, Ryszard T. Harding, Sian E. Perbellini, Filippo Terracciano, Cesare M. |
author_facet | Watson, Samuel A. Duff, James Bardi, Ifigeneia Zabielska, Magdalena Atanur, Santosh S. Jabbour, Richard J. Simon, André Tomas, Alejandra Smolenski, Ryszard T. Harding, Sian E. Perbellini, Filippo Terracciano, Cesare M. |
author_sort | Watson, Samuel A. |
collection | PubMed |
description | Adult cardiac tissue undergoes a rapid process of dedifferentiation when cultured outside the body. The in vivo environment, particularly constant electromechanical stimulation, is fundamental to the regulation of cardiac structure and function. We investigated the role of electromechanical stimulation in preventing culture-induced dedifferentiation of adult cardiac tissue using rat, rabbit and human heart failure myocardial slices. Here we report that the application of a preload equivalent to sarcomere length (SL) = 2.2 μm is optimal for the maintenance of rat myocardial slice structural, functional and transcriptional properties at 24 h. Gene sets associated with the preservation of structure and function are activated, while gene sets involved in dedifferentiation are suppressed. The maximum contractility of human heart failure myocardial slices at 24 h is also optimally maintained at SL = 2.2 μm. Rabbit myocardial slices cultured at SL = 2.2 μm remain stable for 5 days. This approach substantially prolongs the culture of adult cardiac tissue in vitro. |
format | Online Article Text |
id | pubmed-6520377 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-65203772019-05-20 Biomimetic electromechanical stimulation to maintain adult myocardial slices in vitro Watson, Samuel A. Duff, James Bardi, Ifigeneia Zabielska, Magdalena Atanur, Santosh S. Jabbour, Richard J. Simon, André Tomas, Alejandra Smolenski, Ryszard T. Harding, Sian E. Perbellini, Filippo Terracciano, Cesare M. Nat Commun Article Adult cardiac tissue undergoes a rapid process of dedifferentiation when cultured outside the body. The in vivo environment, particularly constant electromechanical stimulation, is fundamental to the regulation of cardiac structure and function. We investigated the role of electromechanical stimulation in preventing culture-induced dedifferentiation of adult cardiac tissue using rat, rabbit and human heart failure myocardial slices. Here we report that the application of a preload equivalent to sarcomere length (SL) = 2.2 μm is optimal for the maintenance of rat myocardial slice structural, functional and transcriptional properties at 24 h. Gene sets associated with the preservation of structure and function are activated, while gene sets involved in dedifferentiation are suppressed. The maximum contractility of human heart failure myocardial slices at 24 h is also optimally maintained at SL = 2.2 μm. Rabbit myocardial slices cultured at SL = 2.2 μm remain stable for 5 days. This approach substantially prolongs the culture of adult cardiac tissue in vitro. Nature Publishing Group UK 2019-05-15 /pmc/articles/PMC6520377/ /pubmed/31092830 http://dx.doi.org/10.1038/s41467-019-10175-3 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Watson, Samuel A. Duff, James Bardi, Ifigeneia Zabielska, Magdalena Atanur, Santosh S. Jabbour, Richard J. Simon, André Tomas, Alejandra Smolenski, Ryszard T. Harding, Sian E. Perbellini, Filippo Terracciano, Cesare M. Biomimetic electromechanical stimulation to maintain adult myocardial slices in vitro |
title | Biomimetic electromechanical stimulation to maintain adult myocardial slices in vitro |
title_full | Biomimetic electromechanical stimulation to maintain adult myocardial slices in vitro |
title_fullStr | Biomimetic electromechanical stimulation to maintain adult myocardial slices in vitro |
title_full_unstemmed | Biomimetic electromechanical stimulation to maintain adult myocardial slices in vitro |
title_short | Biomimetic electromechanical stimulation to maintain adult myocardial slices in vitro |
title_sort | biomimetic electromechanical stimulation to maintain adult myocardial slices in vitro |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520377/ https://www.ncbi.nlm.nih.gov/pubmed/31092830 http://dx.doi.org/10.1038/s41467-019-10175-3 |
work_keys_str_mv | AT watsonsamuela biomimeticelectromechanicalstimulationtomaintainadultmyocardialslicesinvitro AT duffjames biomimeticelectromechanicalstimulationtomaintainadultmyocardialslicesinvitro AT bardiifigeneia biomimeticelectromechanicalstimulationtomaintainadultmyocardialslicesinvitro AT zabielskamagdalena biomimeticelectromechanicalstimulationtomaintainadultmyocardialslicesinvitro AT atanursantoshs biomimeticelectromechanicalstimulationtomaintainadultmyocardialslicesinvitro AT jabbourrichardj biomimeticelectromechanicalstimulationtomaintainadultmyocardialslicesinvitro AT simonandre biomimeticelectromechanicalstimulationtomaintainadultmyocardialslicesinvitro AT tomasalejandra biomimeticelectromechanicalstimulationtomaintainadultmyocardialslicesinvitro AT smolenskiryszardt biomimeticelectromechanicalstimulationtomaintainadultmyocardialslicesinvitro AT hardingsiane biomimeticelectromechanicalstimulationtomaintainadultmyocardialslicesinvitro AT perbellinifilippo biomimeticelectromechanicalstimulationtomaintainadultmyocardialslicesinvitro AT terraccianocesarem biomimeticelectromechanicalstimulationtomaintainadultmyocardialslicesinvitro |