Cargando…
Discrimination of the hierarchical structure of cortical layers in 2-photon microscopy data by combined unsupervised and supervised machine learning
The laminar organization of the cerebral cortex is a fundamental characteristic of the brain, with essential implications for cortical function. Due to the rapidly growing amount of high-resolution brain imaging data, a great demand arises for automated and flexible methods for discriminating the la...
Autores principales: | Li, Dong, Zavaglia, Melissa, Wang, Guangyu, Xie, Hong, Hu, Yi, Werner, Rene, Guan, Ji-Song, Hilgetag, Claus C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520410/ https://www.ncbi.nlm.nih.gov/pubmed/31092841 http://dx.doi.org/10.1038/s41598-019-43432-y |
Ejemplares similares
-
Single Image-Based Vignetting Correction for Improving the Consistency of Neural Activity Analysis in 2-Photon Functional Microscopy
por: Li, Dong, et al.
Publicado: (2022) -
Multimodal Memory Components and Their Long-Term Dynamics Identified in Cortical Layers II/III but Not Layer V
por: Li, Dong, et al.
Publicado: (2019) -
Dissecting the Roles of Supervised and Unsupervised Learning in Perceptual Discrimination Judgments
por: Loewenstein, Yonatan, et al.
Publicado: (2021) -
Deep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation
por: Khaligh-Razavi, Seyed-Mahdi, et al.
Publicado: (2014) -
Supervised, semi-supervised and unsupervised inference of gene regulatory networks
por: Maetschke, Stefan R., et al.
Publicado: (2014)