Cargando…
Association Analysis of Deep Genomic Features Extracted by Denoising Autoencoders in Breast Cancer
Artificial intelligence-based unsupervised deep learning (DL) is widely used to mine multimodal big data. However, there are few applications of this technology to cancer genomics. We aim to develop DL models to extract deep features from the breast cancer gene expression data and copy number altera...
Autores principales: | Liu, Qian, Hu, Pingzhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520782/ https://www.ncbi.nlm.nih.gov/pubmed/30959966 http://dx.doi.org/10.3390/cancers11040494 |
Ejemplares similares
-
Denoising Autoencoder-Based Feature Extraction to Robust SSVEP-Based BCIs
por: Chen, Yeou-Jiunn, et al.
Publicado: (2021) -
Radiogenomic association of deep MR imaging features with genomic profiles and clinical characteristics in breast cancer
por: Liu, Qian, et al.
Publicado: (2023) -
An Adaptive EEG Feature Extraction Method Based on Stacked Denoising Autoencoder for Mental Fatigue Connectivity
por: Yu, Zhongliang, et al.
Publicado: (2021) -
Sparse Convolutional Denoising Autoencoders for Genotype Imputation
por: Chen, Junjie, et al.
Publicado: (2019) -
Single-cell RNA-seq denoising using a deep count autoencoder
por: Eraslan, Gökcen, et al.
Publicado: (2019)