Cargando…
Reinforcement Learning With Parsimonious Computation and a Forgetting Process
Decision-making is assumed to be supported by model-free and model-based systems: the model-free system is based purely on experience, while the model-based system uses a cognitive map of the environment and is more accurate. The recently developed multistep decision-making task and its computationa...
Autores principales: | Toyama, Asako, Katahira, Kentaro, Ohira, Hideki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520826/ https://www.ncbi.nlm.nih.gov/pubmed/31143107 http://dx.doi.org/10.3389/fnhum.2019.00153 |
Ejemplares similares
-
Dual learning processes underlying human decision-making in reversal learning tasks: functional significance and evidence from the model fit to human behavior
por: Bai, Yu, et al.
Publicado: (2014) -
Cardiac Cycle Affects the Asymmetric Value Updating in Instrumental Reward Learning
por: Kimura, Kenta, et al.
Publicado: (2022) -
Surprise Acts as a Reducer of Outcome Value in Human Reinforcement Learning
por: Sumiya, Motofumi, et al.
Publicado: (2020) -
Revisiting the importance of model fitting for model-based fMRI: It does matter in computational psychiatry
por: Katahira, Kentaro, et al.
Publicado: (2021) -
The Effect of Reduced Learning Ability on Avoidance in Psychopathy: A Computational Approach
por: Oba, Takeyuki, et al.
Publicado: (2019)