Cargando…
Automatic classification of focal liver lesions based on MRI and risk factors
OBJECTIVES: Accurate classification of focal liver lesions is an important part of liver disease diagnostics. In clinical practice, the lesion type is often determined from the abdominal MR examination, which includes T2-weighted and dynamic contrast enhanced (DCE) MR images. To date, only T2-weight...
Autores principales: | Jansen, Mariëlle J. A., Kuijf, Hugo J., Veldhuis, Wouter B., Wessels, Frank J., Viergever, Max A., Pluim, Josien P. W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6522218/ https://www.ncbi.nlm.nih.gov/pubmed/31095624 http://dx.doi.org/10.1371/journal.pone.0217053 |
Ejemplares similares
-
Patient-specific fine-tuning of convolutional neural networks for follow-up lesion quantification
por: Jansen, Mariëlle J. A., et al.
Publicado: (2020) -
Automatic Nuclei Segmentation in H&E Stained Breast Cancer Histopathology Images
por: Veta, Mitko, et al.
Publicado: (2013) -
Navigation of a Telepresence Robot via Covert Visuospatial Attention and Real-Time fMRI
por: Andersson, Patrik, et al.
Publicado: (2012) -
Real-Time Decoding of Brain Responses to Visuospatial Attention Using 7T fMRI
por: Andersson, Patrik, et al.
Publicado: (2011) -
Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI
por: Moeskops, Pim, et al.
Publicado: (2017)