Cargando…
Author Correction: Unsupervised Scalable Statistical Method for Identifying Influential Users in Online Social Networks
Autores principales: | Azcorra, A., Chiroque, L. F., Cuevas, R., Anta, A. Fernández, Laniado, H., Lillo, R. E., Romo, J., Sguera, C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6522515/ https://www.ncbi.nlm.nih.gov/pubmed/31097720 http://dx.doi.org/10.1038/s41598-019-43803-5 |
Ejemplares similares
-
Unsupervised Scalable Statistical Method for Identifying Influential Users in Online Social Networks
por: Azcorra, A., et al.
Publicado: (2018) -
Author Correction: Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data
por: Eshaghi, Arman, et al.
Publicado: (2021) -
Author Correction: Unsupervised microstructure segmentation by mimicking metallurgists’ approach to pattern recognition
por: Kim, Hoheok, et al.
Publicado: (2021) -
Author Correction: Passive water ascent in a tall, scalable synthetic tree
por: Shi, Weiwei, et al.
Publicado: (2021) -
Author Correction: Comparing supervised and unsupervised approaches to emotion categorization in the human brain, body, and subjective experience
por: Azari, Bahar, et al.
Publicado: (2021)