Cargando…
MiR-205 suppresses epithelial–mesenchymal transition and inhibits tumor growth of human glioma through down-regulation of HOXD9
Epithelial–mesenchymal transition (EMT) plays a pivotal role in cancer progression. Hsa-miR-205 is considered one of the fundamental regulators of EMT. In the present study, we found that miR-205 was down-regulated in glioma tissues and human glioma cells U87 and U251. Meanwhile, miR-205 overexpress...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6522733/ https://www.ncbi.nlm.nih.gov/pubmed/30992394 http://dx.doi.org/10.1042/BSR20181989 |
Sumario: | Epithelial–mesenchymal transition (EMT) plays a pivotal role in cancer progression. Hsa-miR-205 is considered one of the fundamental regulators of EMT. In the present study, we found that miR-205 was down-regulated in glioma tissues and human glioma cells U87 and U251. Meanwhile, miR-205 overexpression enhanced E-cadherin, reduced mesenchymal markers, and decreased cell proliferation, migration, and invasion in vitro. In vivo, miR-205 suppressed tumor growth. Additionally, HOXD9 was confirmed as a direct target of miR-205. Suppression of HOXD9 by miR-205 was demonstrated by luciferase reporter assay, quantitative real time-PCR analysis, and western blot. Moreover, we observed a negative correlation between miR-205 and HOXD9 in human glioma tissues. In summary, our findings demonstrated that miR-205 suppresses glioma tumor growth, invasion, and reverses EMT through down-regulating its target HOXD9. |
---|