Cargando…

I-BET151 suppresses osteoclast formation and inflammatory cytokines secretion by targetting BRD4 in multiple myeloma

Background: Multiple myeloma (MM) is an incurable hematologic cancer, accompanied by excessive osteoclast formation and inflammatory cytokine secretion. The mechanisms by which bromodomain and extra-terminal domain (BET) protein inhibitor I-BET151 regulates osteoclast differentiation and inflammator...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Ning-Hong, Zheng, Ji-Fu, Zi, Fu-Ming, Cheng, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6522735/
https://www.ncbi.nlm.nih.gov/pubmed/30455393
http://dx.doi.org/10.1042/BSR20181245
Descripción
Sumario:Background: Multiple myeloma (MM) is an incurable hematologic cancer, accompanied by excessive osteoclast formation and inflammatory cytokine secretion. The mechanisms by which bromodomain and extra-terminal domain (BET) protein inhibitor I-BET151 regulates osteoclast differentiation and inflammatory cytokine secretion in MM are largely unknown. Methods: The isolated peripheral blood mononuclear cells from normal or patients with MM were treated with receptor activator of NF-κB ligand (RANKL) and M-CSF to induce osteoclast differentiation. RAW 264.7 cells were treated with RANKL. I-BET151 was applied to investigate the effects of BRD4 inhibition on osteoclast formation and inflammatory cytokine secretion. Osteoclast formation was determined by tartrate-resistant acid phosphatase (TRACP) staining. The expression of osteoclast-specific genes TRACP, matrix metalloproteinase-9 (MMP-9), cathepsin K (Ctsk), and c-Src was tested using quantitative real-time PCR. And the level of inflammatory cytokines TNF-α, IL-1β, and IL-6 was assessed by ELISA. Tumor necrosis factor receptor-associated factor 6 (TRAF6), BRD4, nuclear and cytoplasm p65, IκB-α, nuclear factor of activated T cells cytoplasmic (NFATc1), and osteoprotegerin (OPG) expression were measured by Western blotting. RNAi technology was applied to knock down BET family member BRD4. Results: I-BET151 dose-dependently suppressed osteoclast formation, inhibited the levels of osteoclast-specific genes TRACP, MMP-9, Ctsk, and c-Src and inflammatory cytokines TNF-α, IL-1β, and IL-6 secretion in peripheral blood mononuclear cells and RAW 264.7. I-BET151 inhibited the protein levels of BRD4 and NFATc1, increased OPG expression, and suppressed IκB-α degradation and p65 nuclear translocation. Further, the effects of I-BET151 on osteoclast formation, osteoclast-specific genes expression, inflammatory cytokine secretion, and NF-κB inhibition were promoted by BRD4 knockdown. Conclusion: I-BET151 inhibits osteoclast formation and inflammatory cytokine secretion by targetting BRD4-mediated RANKL-NF-κB signal pathway and BRD4 inhibition might be beneficial for MM treatment.