Cargando…

Dysregulated long non-coding RNAs in pleomorphic adenoma tissues of pleomorphic adenoma gene 1 transgenic mice

Long non-coding RNAs (lncRNAs) have been proven to serve vital roles in various human diseases. However, their involvement in the development of pleomorphic adenoma (PA) in the salivary gland has yet to be examined. In the present study, microarray analysis of the lncRNA and mRNA expression profiles...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Wanlin, Liu, Limin, Lu, Hao, Fu, Jinye, Zhang, Chenping, Yang, Wenjun, Shen, Shukun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6522809/
https://www.ncbi.nlm.nih.gov/pubmed/31059011
http://dx.doi.org/10.3892/mmr.2019.10149
Descripción
Sumario:Long non-coding RNAs (lncRNAs) have been proven to serve vital roles in various human diseases. However, their involvement in the development of pleomorphic adenoma (PA) in the salivary gland has yet to be examined. In the present study, microarray analysis of the lncRNA and mRNA expression profiles in pleomorphic adenoma gene 1 (PLAG1) transgenic mice was performed. Next, bioinformatics tools were used to predict the differentially expressed genes associated with PA, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and lncRNA-mRNA co-expression network analyses. Comparison of the transgenic and control mice demonstrated that a total of 9,110 lncRNAs and 7,750 mRNAs were significantly differentially expressed (fold change >2; P<0.05). Subsequently, six lncRNAs were randomly selected for further analysis, and five of these were validated as differentially expressed in PA by quantitative polymerase chain reaction, supporting the methodology employed in the current study. The GO and KEGG enrichment analysis of the differentially expressed mRNAs revealed that these mRNAs were closely associated with a number of processes involved in the development of PA. Furthermore, the lncRNA-mRNA co-expression network indicated that certain lncRNAs may serve vital roles in the pathogenesis of PA by interacting with a number of core genes. Taken together, these results indicated that lncRNAs and mRNAs were differentially expressed in PA tissues obtained from PLAG1 transgenic mice as compared with those from control mice. These differentially expressed lncRNAs may act as novel biomarkers and therapeutic targets for PA.