Cargando…
Vanillin as an Antifouling and Hydrophilicity Promoter Agent in Surface Modification of Polyethersulfone Membrane
Fouling as an intricate process is considered as the main obstacle in membrane technologies, and its control is one of the main areas of attention in membrane processes. In this study, a commercial polyethersulfone ultrafiltration membrane (MWCO: 4000 g/mol) was surface modified with different conce...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523077/ https://www.ncbi.nlm.nih.gov/pubmed/31022907 http://dx.doi.org/10.3390/membranes9040056 |
Sumario: | Fouling as an intricate process is considered as the main obstacle in membrane technologies, and its control is one of the main areas of attention in membrane processes. In this study, a commercial polyethersulfone ultrafiltration membrane (MWCO: 4000 g/mol) was surface modified with different concentrations of vanillin as an antifouling and hydrophilicity promoter to improve its performance. The presence of vanillin and its increasing adsorption potential trends in higher vanillin concentrations were clearly confirmed by observable changes in FTIR (Fourier transform infrared) spectra after modification. Membranes with better hydrophilicity (almost 30% lower contact angle in the best case) and higher polyethylene glycol solution (PEG) permeability were achieved after modification, where a 35–38% increase in permeability of aqueous solution of PEG was perceived when the membrane was modified at the highest exposure concentration of vanillin (2.8 g/L). After filtration of wood extract, surface modified membrane (2.8 g/L vanillin) showed better antifouling characteristics compared to unmodified membrane, as indicated by approximately 22% lower pure water flux reduction, which in turn improved the separation of lignin from the other organic compounds present in wood extract. |
---|