Cargando…
Machine Learning models for the Identification of Cognitive Tasks using Autonomic Reactions from Heart Rate Variability and Electrodermal Activity
Indices of heart rate variability (HRV) and electrodermal activity (EDA), in conjunction with machine learning models, were used to identify one of three tasks a subject is performing based on autonomic response elicited by the specific task. Using non-invasive measures to identify the task performe...
Autores principales: | Posada-Quintero, Hugo F., Bolkhovsky, Jeffrey B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523197/ https://www.ncbi.nlm.nih.gov/pubmed/31027251 http://dx.doi.org/10.3390/bs9040045 |
Ejemplares similares
-
Sleep Deprivation in Young and Healthy Subjects Is More Sensitively Identified by Higher Frequencies of Electrodermal Activity than by Skin Conductance Level Evaluated in the Time Domain
por: Posada-Quintero, Hugo F., et al.
Publicado: (2017) -
Electrodermal Activity Is Sensitive to Cognitive Stress under Water
por: Posada-Quintero, Hugo F., et al.
Publicado: (2018) -
Machine Learning Models for the Classification of Sleep Deprivation Induced Performance Impairment During a Psychomotor Vigilance Task Using Indices of Eye and Face Tracking
por: Daley, Matthew S., et al.
Publicado: (2020) -
Sympathetic Arousal Detection in Horses Using Electrodermal Activity
por: Golzari, Kia, et al.
Publicado: (2023) -
Innovations in Electrodermal Activity Data Collection and Signal Processing: A Systematic Review
por: Posada-Quintero, Hugo F., et al.
Publicado: (2020)