Cargando…

Functional Nanostructured Oligochitosan–Silica/Carboxymethyl Cellulose Hybrid Materials: Synthesis and Investigation of Their Antifungal Abilities

Functional hybrid materials were successfully synthesized from low-cost waste products, such as oligochitosan (OCS) obtained from chitosan (one of the main components in crab shells) and nanosilica (nSiO(2)) obtained from rice husk, in a 1:1 ratio (w/w), and their dispersion in the presence of carbo...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Thuy N, Huynh, Thu NM, Hoang, DongQuy, Nguyen, Dai Hai, Nguyen, Quoc Hien, Tran, Thai Hoa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523502/
https://www.ncbi.nlm.nih.gov/pubmed/30960612
http://dx.doi.org/10.3390/polym11040628
Descripción
Sumario:Functional hybrid materials were successfully synthesized from low-cost waste products, such as oligochitosan (OCS) obtained from chitosan (one of the main components in crab shells) and nanosilica (nSiO(2)) obtained from rice husk, in a 1:1 ratio (w/w), and their dispersion in the presence of carboxymethyl cellulose at pH 7 was stable for over one month without aggregation. The molecular weights, chemical structures, morphologies, and crystallinities of the obtained materials were characterized by GPC, FTIR, TEM, and XRD, respectively. The antifungal effects of OCS, nSiO(2), and the OCS/nSiO(2) hybrid materials were investigated via a disk-diffusion method. The results showed that the nanohybrid materials had better resistance to Phytophthora infestans fungus than the individual components, and a concentration of the OCS2/nSiO(2) hybrid material of 800 mg L(−1) was the lowest concentration where the material completely inhibited Phytophthora infestans growth, as measured via an agar dilution method. This study not only creates a novel environmentally friendly material with unique synergistic effects that can replace current toxic agrochemicals but also can be considered a new platform for further research in green agricultural applications.