Cargando…

Polypyrrole–Methyl Orange Raman pH Sensor

An easy-to-prepare pH sensor based on electrochemically obtained polypyrrole doped with methyl orange ions is described. It enables the determination of a pH value in the 3–13 range for volumes below 1 µL. In a wide pH range, resonance and pre-resonance methyl orange Raman spectra, excited with the...

Descripción completa

Detalles Bibliográficos
Autores principales: Czaja, Tomasz, Wójcik, Kamil, Grzeszczuk, Maria, Szostak, Roman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523554/
https://www.ncbi.nlm.nih.gov/pubmed/31010147
http://dx.doi.org/10.3390/polym11040715
Descripción
Sumario:An easy-to-prepare pH sensor based on electrochemically obtained polypyrrole doped with methyl orange ions is described. It enables the determination of a pH value in the 3–13 range for volumes below 1 µL. In a wide pH range, resonance and pre-resonance methyl orange Raman spectra, excited with the 514.5 nm line of an Ar(+) laser, changed noticeably in function of H(+) concentration. Two types of measurements were performed. In the first case, Raman spectra of the analyzed solutions were collected for samples placed on the sensor surface using a confocal microscope equipped with a 10x objective. Next, measurements were conducted for the same samples without the sensor. On the basis of these spectra, partial least-squares models were elaborated and validated. Relative standard errors of prediction for calibration, validation, and test samples were found to be in the 3.7%–3.9% range. An analogous model build using spectra registered without the sensor was characterized by slightly worse parameters.