Cargando…

Estimation of Mechanical Performance, Thermal Stability and Flame Retardancy of High-Impact Polystyrene/Surface-Modified APP/Carboxylic-Functionalized MWCNTs Nanocomposites

An ammonium polyphosphate (APP) surface-modified by silane coupling agent was used as flame retardant in high-impact polystyrene (HIPS). A series of HIPS nanocomposites containing different mass fractions of APP (k-APP) surface-modified by silane coupling agent (3-aminopropyl triethoxysilane, KH 550...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Li, Jia, Zhimeng, Sun, Hao, Pan, Yong, Zhao, Jianping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523570/
https://www.ncbi.nlm.nih.gov/pubmed/30960599
http://dx.doi.org/10.3390/polym11040615
Descripción
Sumario:An ammonium polyphosphate (APP) surface-modified by silane coupling agent was used as flame retardant in high-impact polystyrene (HIPS). A series of HIPS nanocomposites containing different mass fractions of APP (k-APP) surface-modified by silane coupling agent (3-aminopropyl triethoxysilane, KH 550) and carboxylic-functionalized MWCNTs (COOH–MWCNTs) were prepared by the melt blending method. A composite only containing APP was also prepared as a reference material. Scanning electron microscopy (SEM) was employed to investigate the dispersion of the fillers into the HIPS matrix, and it was found the hydrophobic groups on the k-APP surface would greatly enhance the dispersion and prevent agglomerations compared with APP. Furthermore, the COOH–MWCNTs also showed good dispersibility into the matrix. Mechanical tests of the nanocomposites revealed that k-APP exhibits a more beneficial effect on both tensile and flexural properties compared with APP. Thermogravimetric analysis (TGA) and cone calorimeter tests (CCT) were conducted to probe the thermal and flammability properties of the nanocomposites, respectively. The synergistic effects of k-APP and COOH–MWCNTs on mechanical, thermal and flammability properties were examined as well.