Cargando…
Dye-Doped Electrically Smart Windows Based on Polymer-Stabilized Liquid Crystal
Here we report the fabrication of dye-doped polymer-stabilized liquid crystals (PSLC)-based smart windows. The effect of dye doping on PSLC contrast was investigated. Non-dichroic dye tints the PSLC sample in both off- and on-state, which is not beneficial for increasing its off/on contrast. The sam...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523582/ https://www.ncbi.nlm.nih.gov/pubmed/30995763 http://dx.doi.org/10.3390/polym11040694 |
Sumario: | Here we report the fabrication of dye-doped polymer-stabilized liquid crystals (PSLC)-based smart windows. The effect of dye doping on PSLC contrast was investigated. Non-dichroic dye tints the PSLC sample in both off- and on-state, which is not beneficial for increasing its off/on contrast. The sample doped with dichroic dye shows a slight color in the off-state and strong color in the on-state, resulting in an enhanced contrast, which attributed to orientation dependent absorption of dichroic dyes. Furthermore, we blended non-dichroic dye and dichroic dye who have complementary absorption together into PSLC mixture. The sample is almost colorless in the off-state due to the subtractive process, while colored in the on-state. The contrast is further enhanced. The results show that the proposed multi-dye-doped PSLC device has high visual contrast and fast response time, making it attractive for applications in light management and architectural aesthetics. |
---|