Cargando…

Synthesis and Electrospinning of Polycaprolactone from an Aluminium-Based Catalyst: Influence of the Ancillary Ligand and Initiators on Catalytic Efficiency and Fibre Structure

In the present study, we investigated the catalytic performance of a 2,2′-methylenebis(6-tert-butyl-4-methylphenol) (MDBP)–aluminium complex for the ring-opening polymerisation (ROP) of ε-caprolactone in combination with various alcohols as initiators. Three different alcohols were investigated: 1-a...

Descripción completa

Detalles Bibliográficos
Autores principales: Kouparitsas, Ioannis K., Mele, Elisa, Ronca, Sara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523682/
https://www.ncbi.nlm.nih.gov/pubmed/31013916
http://dx.doi.org/10.3390/polym11040677
Descripción
Sumario:In the present study, we investigated the catalytic performance of a 2,2′-methylenebis(6-tert-butyl-4-methylphenol) (MDBP)–aluminium complex for the ring-opening polymerisation (ROP) of ε-caprolactone in combination with various alcohols as initiators. Three different alcohols were investigated: 1-adamantanemethanol (A), 1H,1H,2H,2H-perfluoro-1-octanol (F) and isopropanol (I). Samplings of polycaprolactone (PCL) at various reaction times showed a linear increase in the polymer molecular weight with time, with very narrow polydispersity, confirming the living nature of the catalytic system. Scanning electron microscope (SEM) images of electrospun PCL fibre mats produced from 30 wt % dichloromethane/dimethyl sulfoxide solutions showed a high level of surface porosity with a reasonable homogeneity of fibre diameters. The values of the liquid absorption and water contact angle were measured for the electrospun mats, with the F-capped PCL consistently showing absorption values up to three times higher than those of PCL samples capped with the other two alcohols, as well as increased hydrophobicity. The nature of the alcohol can influence the surface hydrophobicity and absorption ability of electrospun fibres, demonstrating the possibility of tailoring material properties through controlled polymerisation.