Cargando…
Opto-thermally Excited Fabry-Perot Resonance Frequency Behaviors of Clamped Circular Graphene Membrane
An opto-thermally excited optical fiber Fabry-Perot (F-P) resonant probe with suspended clamped circular graphene diaphragm is presented in this paper. Then, the dependence of resonance frequency behaviors of graphene diaphragm upon opto-mechanical factors including membrane properties, laser excita...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523719/ https://www.ncbi.nlm.nih.gov/pubmed/30959952 http://dx.doi.org/10.3390/nano9040563 |
_version_ | 1783419399308312576 |
---|---|
author | Shi, Fu-Tao Fan, Shang-Chun Li, Cheng Li, Zi-Ang |
author_facet | Shi, Fu-Tao Fan, Shang-Chun Li, Cheng Li, Zi-Ang |
author_sort | Shi, Fu-Tao |
collection | PubMed |
description | An opto-thermally excited optical fiber Fabry-Perot (F-P) resonant probe with suspended clamped circular graphene diaphragm is presented in this paper. Then, the dependence of resonance frequency behaviors of graphene diaphragm upon opto-mechanical factors including membrane properties, laser excitation parameters and film boundary conditions are investigated via COMSOL Multiphysics simulation. The results show that the radius and thickness of membrane will linearly affect the optical fiber light-induced temperature distribution, thus resulting in rapidly decreasing resonance frequency changes with the radius-to-thickness ratio. Moreover, the prestress can be regulated in the range of 10(8) Pa to 10(9) Pa by altering the environmental temperature with a scale factor of 14.2 MPa/K. It is important to note that the availability of F-P resonant probe with a defective clamped circular graphene membrane can be improved notably by fabricating the defected circular membrane to a double-end clamped beam, which gives a broader perspective to characterize the resonance performance of opto-thermally excited F-P resonators. |
format | Online Article Text |
id | pubmed-6523719 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-65237192019-06-03 Opto-thermally Excited Fabry-Perot Resonance Frequency Behaviors of Clamped Circular Graphene Membrane Shi, Fu-Tao Fan, Shang-Chun Li, Cheng Li, Zi-Ang Nanomaterials (Basel) Article An opto-thermally excited optical fiber Fabry-Perot (F-P) resonant probe with suspended clamped circular graphene diaphragm is presented in this paper. Then, the dependence of resonance frequency behaviors of graphene diaphragm upon opto-mechanical factors including membrane properties, laser excitation parameters and film boundary conditions are investigated via COMSOL Multiphysics simulation. The results show that the radius and thickness of membrane will linearly affect the optical fiber light-induced temperature distribution, thus resulting in rapidly decreasing resonance frequency changes with the radius-to-thickness ratio. Moreover, the prestress can be regulated in the range of 10(8) Pa to 10(9) Pa by altering the environmental temperature with a scale factor of 14.2 MPa/K. It is important to note that the availability of F-P resonant probe with a defective clamped circular graphene membrane can be improved notably by fabricating the defected circular membrane to a double-end clamped beam, which gives a broader perspective to characterize the resonance performance of opto-thermally excited F-P resonators. MDPI 2019-04-07 /pmc/articles/PMC6523719/ /pubmed/30959952 http://dx.doi.org/10.3390/nano9040563 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Shi, Fu-Tao Fan, Shang-Chun Li, Cheng Li, Zi-Ang Opto-thermally Excited Fabry-Perot Resonance Frequency Behaviors of Clamped Circular Graphene Membrane |
title | Opto-thermally Excited Fabry-Perot Resonance Frequency Behaviors of Clamped Circular Graphene Membrane |
title_full | Opto-thermally Excited Fabry-Perot Resonance Frequency Behaviors of Clamped Circular Graphene Membrane |
title_fullStr | Opto-thermally Excited Fabry-Perot Resonance Frequency Behaviors of Clamped Circular Graphene Membrane |
title_full_unstemmed | Opto-thermally Excited Fabry-Perot Resonance Frequency Behaviors of Clamped Circular Graphene Membrane |
title_short | Opto-thermally Excited Fabry-Perot Resonance Frequency Behaviors of Clamped Circular Graphene Membrane |
title_sort | opto-thermally excited fabry-perot resonance frequency behaviors of clamped circular graphene membrane |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523719/ https://www.ncbi.nlm.nih.gov/pubmed/30959952 http://dx.doi.org/10.3390/nano9040563 |
work_keys_str_mv | AT shifutao optothermallyexcitedfabryperotresonancefrequencybehaviorsofclampedcirculargraphenemembrane AT fanshangchun optothermallyexcitedfabryperotresonancefrequencybehaviorsofclampedcirculargraphenemembrane AT licheng optothermallyexcitedfabryperotresonancefrequencybehaviorsofclampedcirculargraphenemembrane AT liziang optothermallyexcitedfabryperotresonancefrequencybehaviorsofclampedcirculargraphenemembrane |