Cargando…
Thermoresponsive Poly(N-Isopropylacrylamide-co-Dimethylaminoethyl Methacrylate) Microgel Aqueous Dispersions with Potential Antimicrobial Properties
The work herein describes the preparation of thermoresponsive microgels with potential antimicrobial properties. Most of the work performed so far regarding microgels with antimicrobial activity, deals with the ability of microgels to carry and release antibiotics or antimicrobial agents (antimicrob...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523738/ https://www.ncbi.nlm.nih.gov/pubmed/30960590 http://dx.doi.org/10.3390/polym11040606 |
_version_ | 1783419403789926400 |
---|---|
author | Echeverría, Coro Aragón-Gutiérrez, Alejandro Fernández-García, Marta Muñoz-Bonilla, Alexandra López, Daniel |
author_facet | Echeverría, Coro Aragón-Gutiérrez, Alejandro Fernández-García, Marta Muñoz-Bonilla, Alexandra López, Daniel |
author_sort | Echeverría, Coro |
collection | PubMed |
description | The work herein describes the preparation of thermoresponsive microgels with potential antimicrobial properties. Most of the work performed so far regarding microgels with antimicrobial activity, deals with the ability of microgels to carry and release antibiotics or antimicrobial agents (antimicrobial peptides). The originality of this work lies in the possibility of developing intrinsic antimicrobial microgels by copolymerization of the well-known thermoresponsive monomer, N-isopropylacrylamide (NIPAM) with dimethylaminoethyl methacrylate (DMAEMA), a water-soluble monomer, to form microgels via precipitation polymerization (radical polymerization). Due to the presence of a tertiary amine in the DMAEMA comonomer, microgels can be modified by N-alkylation reaction with methyl and butyl iodide. This quaternization confers positive charges to the microgel surfaces and thus the potential antimicrobial activity. The effect of DMAEMA content and its quaternization with both, methyl and butyl iodide is evaluated in terms of thermal and surface charge properties, as well as in the microgel size and viscoelastic behavior. Finally, a preliminary study of the antimicrobial activity against different microorganisms is also performed in terms of minimum inhibitory concentration (MIC). From this study we determined that in contrast with butylated microgels, methylated ones show potential antimicrobial activity and good physical properties besides of maintaining microgel thermo-responsiveness. |
format | Online Article Text |
id | pubmed-6523738 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-65237382019-06-03 Thermoresponsive Poly(N-Isopropylacrylamide-co-Dimethylaminoethyl Methacrylate) Microgel Aqueous Dispersions with Potential Antimicrobial Properties Echeverría, Coro Aragón-Gutiérrez, Alejandro Fernández-García, Marta Muñoz-Bonilla, Alexandra López, Daniel Polymers (Basel) Article The work herein describes the preparation of thermoresponsive microgels with potential antimicrobial properties. Most of the work performed so far regarding microgels with antimicrobial activity, deals with the ability of microgels to carry and release antibiotics or antimicrobial agents (antimicrobial peptides). The originality of this work lies in the possibility of developing intrinsic antimicrobial microgels by copolymerization of the well-known thermoresponsive monomer, N-isopropylacrylamide (NIPAM) with dimethylaminoethyl methacrylate (DMAEMA), a water-soluble monomer, to form microgels via precipitation polymerization (radical polymerization). Due to the presence of a tertiary amine in the DMAEMA comonomer, microgels can be modified by N-alkylation reaction with methyl and butyl iodide. This quaternization confers positive charges to the microgel surfaces and thus the potential antimicrobial activity. The effect of DMAEMA content and its quaternization with both, methyl and butyl iodide is evaluated in terms of thermal and surface charge properties, as well as in the microgel size and viscoelastic behavior. Finally, a preliminary study of the antimicrobial activity against different microorganisms is also performed in terms of minimum inhibitory concentration (MIC). From this study we determined that in contrast with butylated microgels, methylated ones show potential antimicrobial activity and good physical properties besides of maintaining microgel thermo-responsiveness. MDPI 2019-04-02 /pmc/articles/PMC6523738/ /pubmed/30960590 http://dx.doi.org/10.3390/polym11040606 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Echeverría, Coro Aragón-Gutiérrez, Alejandro Fernández-García, Marta Muñoz-Bonilla, Alexandra López, Daniel Thermoresponsive Poly(N-Isopropylacrylamide-co-Dimethylaminoethyl Methacrylate) Microgel Aqueous Dispersions with Potential Antimicrobial Properties |
title | Thermoresponsive Poly(N-Isopropylacrylamide-co-Dimethylaminoethyl Methacrylate) Microgel Aqueous Dispersions with Potential Antimicrobial Properties |
title_full | Thermoresponsive Poly(N-Isopropylacrylamide-co-Dimethylaminoethyl Methacrylate) Microgel Aqueous Dispersions with Potential Antimicrobial Properties |
title_fullStr | Thermoresponsive Poly(N-Isopropylacrylamide-co-Dimethylaminoethyl Methacrylate) Microgel Aqueous Dispersions with Potential Antimicrobial Properties |
title_full_unstemmed | Thermoresponsive Poly(N-Isopropylacrylamide-co-Dimethylaminoethyl Methacrylate) Microgel Aqueous Dispersions with Potential Antimicrobial Properties |
title_short | Thermoresponsive Poly(N-Isopropylacrylamide-co-Dimethylaminoethyl Methacrylate) Microgel Aqueous Dispersions with Potential Antimicrobial Properties |
title_sort | thermoresponsive poly(n-isopropylacrylamide-co-dimethylaminoethyl methacrylate) microgel aqueous dispersions with potential antimicrobial properties |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523738/ https://www.ncbi.nlm.nih.gov/pubmed/30960590 http://dx.doi.org/10.3390/polym11040606 |
work_keys_str_mv | AT echeverriacoro thermoresponsivepolynisopropylacrylamidecodimethylaminoethylmethacrylatemicrogelaqueousdispersionswithpotentialantimicrobialproperties AT aragongutierrezalejandro thermoresponsivepolynisopropylacrylamidecodimethylaminoethylmethacrylatemicrogelaqueousdispersionswithpotentialantimicrobialproperties AT fernandezgarciamarta thermoresponsivepolynisopropylacrylamidecodimethylaminoethylmethacrylatemicrogelaqueousdispersionswithpotentialantimicrobialproperties AT munozbonillaalexandra thermoresponsivepolynisopropylacrylamidecodimethylaminoethylmethacrylatemicrogelaqueousdispersionswithpotentialantimicrobialproperties AT lopezdaniel thermoresponsivepolynisopropylacrylamidecodimethylaminoethylmethacrylatemicrogelaqueousdispersionswithpotentialantimicrobialproperties |