Cargando…

CRISP-R/Cas9 Mediated Deletion of Copper Transport Genes CTR1 and DMT1 in NSCLC Cell Line H1299. Biological and Pharmacological Consequences

Copper, the highly toxic micronutrient, plays two essential roles: it is a catalytic and structural cofactor for Cu-dependent enzymes, and it acts as a secondary messenger. In the cells, copper is imported by CTR1 (high-affinity copper transporter 1), a transmembrane high-affinity copper importer, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Ilyechova, Ekaterina Y., Bonaldi, Elisa, Orlov, Iurii A., Skomorokhova, Ekaterina A., Puchkova, Ludmila V., Broggini, Massimo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523758/
https://www.ncbi.nlm.nih.gov/pubmed/30959888
http://dx.doi.org/10.3390/cells8040322
_version_ 1783419408405757952
author Ilyechova, Ekaterina Y.
Bonaldi, Elisa
Orlov, Iurii A.
Skomorokhova, Ekaterina A.
Puchkova, Ludmila V.
Broggini, Massimo
author_facet Ilyechova, Ekaterina Y.
Bonaldi, Elisa
Orlov, Iurii A.
Skomorokhova, Ekaterina A.
Puchkova, Ludmila V.
Broggini, Massimo
author_sort Ilyechova, Ekaterina Y.
collection PubMed
description Copper, the highly toxic micronutrient, plays two essential roles: it is a catalytic and structural cofactor for Cu-dependent enzymes, and it acts as a secondary messenger. In the cells, copper is imported by CTR1 (high-affinity copper transporter 1), a transmembrane high-affinity copper importer, and DMT1 (divalent metal transporter). In cytosol, enzyme-specific chaperones receive copper from CTR1 C-terminus and deliver it to their apoenzymes. DMT1 cannot be a donor of catalytic copper because it does not have a cytosol domain which is required for copper transfer to the Cu-chaperons that assist the formation of cuproenzymes. Here, we assume that DMT1 can mediate copper way required for a regulatory copper pool. To verify this hypothesis, we used CRISPR/Cas9 to generate H1299 cell line with CTR1 or DMT1 single knockout (KO) and CTR1/DMT1 double knockout (DKO). To confirm KOs of the genes qRT-PCR were used. Two independent clones for each gene were selected for further studies. In CTR1 KO cells, expression of the DMT1 gene was significantly increased and vice versa. In subcellular compartments of the derived cells, copper concentration dropped, however, in nuclei basal level of copper did not change dramatically. CTR1 KO cells, but not DMT1 KO, demonstrated reduced sensitivity to cisplatin and silver ions, the agents that enter the cell through CTR1. Using single CTR1 and DMT1 KO, we were able to show that both, CTR1 and DMT1, provided the formation of vital intracellular cuproenzymes (SOD1, COX), but not secretory ceruloplasmin. The loss of CTR1 resulted in a decrease in the level of COMMD1, XIAP, and NF-κB. Differently, the DMT1 deficiency induced increase of the COMMD1, HIF1α, and XIAP levels. The possibility of using CTR1 KO and DMT1 KO cells to study homeodynamics of catalytic and signaling copper selectively is discussed.
format Online
Article
Text
id pubmed-6523758
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-65237582019-06-03 CRISP-R/Cas9 Mediated Deletion of Copper Transport Genes CTR1 and DMT1 in NSCLC Cell Line H1299. Biological and Pharmacological Consequences Ilyechova, Ekaterina Y. Bonaldi, Elisa Orlov, Iurii A. Skomorokhova, Ekaterina A. Puchkova, Ludmila V. Broggini, Massimo Cells Article Copper, the highly toxic micronutrient, plays two essential roles: it is a catalytic and structural cofactor for Cu-dependent enzymes, and it acts as a secondary messenger. In the cells, copper is imported by CTR1 (high-affinity copper transporter 1), a transmembrane high-affinity copper importer, and DMT1 (divalent metal transporter). In cytosol, enzyme-specific chaperones receive copper from CTR1 C-terminus and deliver it to their apoenzymes. DMT1 cannot be a donor of catalytic copper because it does not have a cytosol domain which is required for copper transfer to the Cu-chaperons that assist the formation of cuproenzymes. Here, we assume that DMT1 can mediate copper way required for a regulatory copper pool. To verify this hypothesis, we used CRISPR/Cas9 to generate H1299 cell line with CTR1 or DMT1 single knockout (KO) and CTR1/DMT1 double knockout (DKO). To confirm KOs of the genes qRT-PCR were used. Two independent clones for each gene were selected for further studies. In CTR1 KO cells, expression of the DMT1 gene was significantly increased and vice versa. In subcellular compartments of the derived cells, copper concentration dropped, however, in nuclei basal level of copper did not change dramatically. CTR1 KO cells, but not DMT1 KO, demonstrated reduced sensitivity to cisplatin and silver ions, the agents that enter the cell through CTR1. Using single CTR1 and DMT1 KO, we were able to show that both, CTR1 and DMT1, provided the formation of vital intracellular cuproenzymes (SOD1, COX), but not secretory ceruloplasmin. The loss of CTR1 resulted in a decrease in the level of COMMD1, XIAP, and NF-κB. Differently, the DMT1 deficiency induced increase of the COMMD1, HIF1α, and XIAP levels. The possibility of using CTR1 KO and DMT1 KO cells to study homeodynamics of catalytic and signaling copper selectively is discussed. MDPI 2019-04-06 /pmc/articles/PMC6523758/ /pubmed/30959888 http://dx.doi.org/10.3390/cells8040322 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ilyechova, Ekaterina Y.
Bonaldi, Elisa
Orlov, Iurii A.
Skomorokhova, Ekaterina A.
Puchkova, Ludmila V.
Broggini, Massimo
CRISP-R/Cas9 Mediated Deletion of Copper Transport Genes CTR1 and DMT1 in NSCLC Cell Line H1299. Biological and Pharmacological Consequences
title CRISP-R/Cas9 Mediated Deletion of Copper Transport Genes CTR1 and DMT1 in NSCLC Cell Line H1299. Biological and Pharmacological Consequences
title_full CRISP-R/Cas9 Mediated Deletion of Copper Transport Genes CTR1 and DMT1 in NSCLC Cell Line H1299. Biological and Pharmacological Consequences
title_fullStr CRISP-R/Cas9 Mediated Deletion of Copper Transport Genes CTR1 and DMT1 in NSCLC Cell Line H1299. Biological and Pharmacological Consequences
title_full_unstemmed CRISP-R/Cas9 Mediated Deletion of Copper Transport Genes CTR1 and DMT1 in NSCLC Cell Line H1299. Biological and Pharmacological Consequences
title_short CRISP-R/Cas9 Mediated Deletion of Copper Transport Genes CTR1 and DMT1 in NSCLC Cell Line H1299. Biological and Pharmacological Consequences
title_sort crisp-r/cas9 mediated deletion of copper transport genes ctr1 and dmt1 in nsclc cell line h1299. biological and pharmacological consequences
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523758/
https://www.ncbi.nlm.nih.gov/pubmed/30959888
http://dx.doi.org/10.3390/cells8040322
work_keys_str_mv AT ilyechovaekaterinay crisprcas9mediateddeletionofcoppertransportgenesctr1anddmt1innsclccelllineh1299biologicalandpharmacologicalconsequences
AT bonaldielisa crisprcas9mediateddeletionofcoppertransportgenesctr1anddmt1innsclccelllineh1299biologicalandpharmacologicalconsequences
AT orloviuriia crisprcas9mediateddeletionofcoppertransportgenesctr1anddmt1innsclccelllineh1299biologicalandpharmacologicalconsequences
AT skomorokhovaekaterinaa crisprcas9mediateddeletionofcoppertransportgenesctr1anddmt1innsclccelllineh1299biologicalandpharmacologicalconsequences
AT puchkovaludmilav crisprcas9mediateddeletionofcoppertransportgenesctr1anddmt1innsclccelllineh1299biologicalandpharmacologicalconsequences
AT brogginimassimo crisprcas9mediateddeletionofcoppertransportgenesctr1anddmt1innsclccelllineh1299biologicalandpharmacologicalconsequences