Cargando…
Preparation, Characterization, and Performance Control of Nanographitic Films
Using methane as a carbon source, low-dimensional carbon nanomaterials were obtained in this work. The films were deposited directly on glass substrates by radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD). The configuration and compositions of this nanographite films were identif...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523781/ https://www.ncbi.nlm.nih.gov/pubmed/30999677 http://dx.doi.org/10.3390/nano9040628 |
Sumario: | Using methane as a carbon source, low-dimensional carbon nanomaterials were obtained in this work. The films were deposited directly on glass substrates by radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD). The configuration and compositions of this nanographite films were identified by X-ray photoelectron spectroscopy (XPS) as carbon in sp(2) bonding form. Raman spectral characterization verified the configuration of the films to be hexatomic ring of carbon atoms. As a result, they were found to be nanographite films (NGFs). Also, the atomic force microscopy (AFM) topography and Raman spectra of different areas demonstrated the diversity of the films at the nano scale. The high light-transmitting and electron mobility indicated that the NGFs possessed excellent optic-electronic properties and could be used as good photoelectrical function materials. Furthermore, the physical and chemical growth mechanism of NGFs were analyzed by PECVD. NGFs could be obtained in a controlled process by modulating the growth conditions. In this work, the complicated transfer process commonly used for optoelectronic devices could be avoided. Also, by growing the films directly on a glass substrate, the quality degradation of the film was not a problem. This work can further promote the development of next-generation electronic or optoelectronic function materials, especially for their application in transparent conductive electrode fields. |
---|