Cargando…
Secretory Nanoparticles of Neospora caninum Profilin-Fused with the Transmembrane Domain of GP64 from Silkworm Hemolymph
Neosporosis, which is caused by Neospora caninum, is a well-known disease in the veterinary field. Infections in pregnant cattle lead to abortion via transplacental (congenitally from mother to fetus) transmission. In this study, a N. caninum profilin (NcPROF), was expressed in silkworm larvae by re...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523865/ https://www.ncbi.nlm.nih.gov/pubmed/30974883 http://dx.doi.org/10.3390/nano9040593 |
_version_ | 1783419433449947136 |
---|---|
author | Suhaimi, Hamizah Hiramatsu, Rikito Xu, Jian Kato, Tatsuya Park, Enoch Y. |
author_facet | Suhaimi, Hamizah Hiramatsu, Rikito Xu, Jian Kato, Tatsuya Park, Enoch Y. |
author_sort | Suhaimi, Hamizah |
collection | PubMed |
description | Neosporosis, which is caused by Neospora caninum, is a well-known disease in the veterinary field. Infections in pregnant cattle lead to abortion via transplacental (congenitally from mother to fetus) transmission. In this study, a N. caninum profilin (NcPROF), was expressed in silkworm larvae by recombinant Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid and was purified from the hemolymph. Three NcPROF constructs were investigated, native NcPROF fused with an N-terminal PA tag (PA-NcPROF), PA-NcPROF fused with the signal sequence of bombyxin from B. mori (bx-PA-NcPROF), and bx-PA-NcPROF with additional C-terminal transmembrane and cytoplasmic domains of GP64 from BmNPV (bx-PA-NcPROF-GP64TM). All recombinant proteins were observed extra- and intracellularly in cultured Bm5 cells and silkworm larvae. The bx-PA-NcPROF-GP64TM was partly abnormally secreted, even though it has the transmembrane domain, and only it was pelleted by ultracentrifugation, but PA-NcPROF and bx-PA-NcPROF were not. Additionally, bx-PA-NcPROF-GP64TM was successfully purified from silkworm hemolymph by anti-PA agarose beads while PA-NcPROF and bx-PA-NcPROF were not. The purified bx-PA-NcPROF-GP64TM protein bound to its receptor, mouse Toll-like receptor 11 (TLR-11), and formed unique nanoparticles. These results suggest that profilin fused with GP64TM was secreted as a nanoparticle with binding affinity to its receptor and this nanoparticle formation is advantageous for the development of vaccines to N. caninum. |
format | Online Article Text |
id | pubmed-6523865 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-65238652019-06-03 Secretory Nanoparticles of Neospora caninum Profilin-Fused with the Transmembrane Domain of GP64 from Silkworm Hemolymph Suhaimi, Hamizah Hiramatsu, Rikito Xu, Jian Kato, Tatsuya Park, Enoch Y. Nanomaterials (Basel) Article Neosporosis, which is caused by Neospora caninum, is a well-known disease in the veterinary field. Infections in pregnant cattle lead to abortion via transplacental (congenitally from mother to fetus) transmission. In this study, a N. caninum profilin (NcPROF), was expressed in silkworm larvae by recombinant Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid and was purified from the hemolymph. Three NcPROF constructs were investigated, native NcPROF fused with an N-terminal PA tag (PA-NcPROF), PA-NcPROF fused with the signal sequence of bombyxin from B. mori (bx-PA-NcPROF), and bx-PA-NcPROF with additional C-terminal transmembrane and cytoplasmic domains of GP64 from BmNPV (bx-PA-NcPROF-GP64TM). All recombinant proteins were observed extra- and intracellularly in cultured Bm5 cells and silkworm larvae. The bx-PA-NcPROF-GP64TM was partly abnormally secreted, even though it has the transmembrane domain, and only it was pelleted by ultracentrifugation, but PA-NcPROF and bx-PA-NcPROF were not. Additionally, bx-PA-NcPROF-GP64TM was successfully purified from silkworm hemolymph by anti-PA agarose beads while PA-NcPROF and bx-PA-NcPROF were not. The purified bx-PA-NcPROF-GP64TM protein bound to its receptor, mouse Toll-like receptor 11 (TLR-11), and formed unique nanoparticles. These results suggest that profilin fused with GP64TM was secreted as a nanoparticle with binding affinity to its receptor and this nanoparticle formation is advantageous for the development of vaccines to N. caninum. MDPI 2019-04-10 /pmc/articles/PMC6523865/ /pubmed/30974883 http://dx.doi.org/10.3390/nano9040593 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Suhaimi, Hamizah Hiramatsu, Rikito Xu, Jian Kato, Tatsuya Park, Enoch Y. Secretory Nanoparticles of Neospora caninum Profilin-Fused with the Transmembrane Domain of GP64 from Silkworm Hemolymph |
title | Secretory Nanoparticles of Neospora caninum Profilin-Fused with the Transmembrane Domain of GP64 from Silkworm Hemolymph |
title_full | Secretory Nanoparticles of Neospora caninum Profilin-Fused with the Transmembrane Domain of GP64 from Silkworm Hemolymph |
title_fullStr | Secretory Nanoparticles of Neospora caninum Profilin-Fused with the Transmembrane Domain of GP64 from Silkworm Hemolymph |
title_full_unstemmed | Secretory Nanoparticles of Neospora caninum Profilin-Fused with the Transmembrane Domain of GP64 from Silkworm Hemolymph |
title_short | Secretory Nanoparticles of Neospora caninum Profilin-Fused with the Transmembrane Domain of GP64 from Silkworm Hemolymph |
title_sort | secretory nanoparticles of neospora caninum profilin-fused with the transmembrane domain of gp64 from silkworm hemolymph |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523865/ https://www.ncbi.nlm.nih.gov/pubmed/30974883 http://dx.doi.org/10.3390/nano9040593 |
work_keys_str_mv | AT suhaimihamizah secretorynanoparticlesofneosporacaninumprofilinfusedwiththetransmembranedomainofgp64fromsilkwormhemolymph AT hiramatsurikito secretorynanoparticlesofneosporacaninumprofilinfusedwiththetransmembranedomainofgp64fromsilkwormhemolymph AT xujian secretorynanoparticlesofneosporacaninumprofilinfusedwiththetransmembranedomainofgp64fromsilkwormhemolymph AT katotatsuya secretorynanoparticlesofneosporacaninumprofilinfusedwiththetransmembranedomainofgp64fromsilkwormhemolymph AT parkenochy secretorynanoparticlesofneosporacaninumprofilinfusedwiththetransmembranedomainofgp64fromsilkwormhemolymph |