Cargando…
Flexible and Highly Sensitive Pressure Sensors Based on Microstructured Carbon Nanowalls Electrodes
Wearable pressure sensors have attracted widespread attention in recent years because of their great potential in human healthcare applications such as physiological signals monitoring. A desirable pressure sensor should possess the advantages of high sensitivity, a simple manufacturing process, and...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523954/ https://www.ncbi.nlm.nih.gov/pubmed/30939725 http://dx.doi.org/10.3390/nano9040496 |
_version_ | 1783419454192877568 |
---|---|
author | Zhou, Xi Zhang, Yongna Yang, Jun Li, Jialu Luo, Shi Wei, Dapeng |
author_facet | Zhou, Xi Zhang, Yongna Yang, Jun Li, Jialu Luo, Shi Wei, Dapeng |
author_sort | Zhou, Xi |
collection | PubMed |
description | Wearable pressure sensors have attracted widespread attention in recent years because of their great potential in human healthcare applications such as physiological signals monitoring. A desirable pressure sensor should possess the advantages of high sensitivity, a simple manufacturing process, and good stability. Here, we present a highly sensitive, simply fabricated wearable resistive pressure sensor based on three-dimensional microstructured carbon nanowalls (CNWs) embedded in a polydimethylsiloxane (PDMS) substrate. The method of using unpolished silicon wafers as templates provides an easy approach to fabricate the irregular microstructure of CNWs/PDMS electrodes, which plays a significant role in increasing the sensitivity and stability of resistive pressure sensors. The sensitivity of the CNWs/PDMS pressure sensor with irregular microstructures is as high as 6.64 kPa(−1) in the low-pressure regime, and remains fairly high (0.15 kPa(−1)) in the high-pressure regime (~10 kPa). Both the relatively short response time of ~30 ms and good reproducibility over 1000 cycles of pressure loading and unloading tests illustrate the high performance of the proposed device. Our pressure sensor exhibits a superior minimal limit of detection of 0.6 Pa, which shows promising potential in detecting human physiological signals such as heart rate. Moreover, it can be turned into an 8 × 8 pixels array to map spatial pressure distribution and realize array sensing imaging. |
format | Online Article Text |
id | pubmed-6523954 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-65239542019-06-03 Flexible and Highly Sensitive Pressure Sensors Based on Microstructured Carbon Nanowalls Electrodes Zhou, Xi Zhang, Yongna Yang, Jun Li, Jialu Luo, Shi Wei, Dapeng Nanomaterials (Basel) Article Wearable pressure sensors have attracted widespread attention in recent years because of their great potential in human healthcare applications such as physiological signals monitoring. A desirable pressure sensor should possess the advantages of high sensitivity, a simple manufacturing process, and good stability. Here, we present a highly sensitive, simply fabricated wearable resistive pressure sensor based on three-dimensional microstructured carbon nanowalls (CNWs) embedded in a polydimethylsiloxane (PDMS) substrate. The method of using unpolished silicon wafers as templates provides an easy approach to fabricate the irregular microstructure of CNWs/PDMS electrodes, which plays a significant role in increasing the sensitivity and stability of resistive pressure sensors. The sensitivity of the CNWs/PDMS pressure sensor with irregular microstructures is as high as 6.64 kPa(−1) in the low-pressure regime, and remains fairly high (0.15 kPa(−1)) in the high-pressure regime (~10 kPa). Both the relatively short response time of ~30 ms and good reproducibility over 1000 cycles of pressure loading and unloading tests illustrate the high performance of the proposed device. Our pressure sensor exhibits a superior minimal limit of detection of 0.6 Pa, which shows promising potential in detecting human physiological signals such as heart rate. Moreover, it can be turned into an 8 × 8 pixels array to map spatial pressure distribution and realize array sensing imaging. MDPI 2019-04-01 /pmc/articles/PMC6523954/ /pubmed/30939725 http://dx.doi.org/10.3390/nano9040496 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhou, Xi Zhang, Yongna Yang, Jun Li, Jialu Luo, Shi Wei, Dapeng Flexible and Highly Sensitive Pressure Sensors Based on Microstructured Carbon Nanowalls Electrodes |
title | Flexible and Highly Sensitive Pressure Sensors Based on Microstructured Carbon Nanowalls Electrodes |
title_full | Flexible and Highly Sensitive Pressure Sensors Based on Microstructured Carbon Nanowalls Electrodes |
title_fullStr | Flexible and Highly Sensitive Pressure Sensors Based on Microstructured Carbon Nanowalls Electrodes |
title_full_unstemmed | Flexible and Highly Sensitive Pressure Sensors Based on Microstructured Carbon Nanowalls Electrodes |
title_short | Flexible and Highly Sensitive Pressure Sensors Based on Microstructured Carbon Nanowalls Electrodes |
title_sort | flexible and highly sensitive pressure sensors based on microstructured carbon nanowalls electrodes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523954/ https://www.ncbi.nlm.nih.gov/pubmed/30939725 http://dx.doi.org/10.3390/nano9040496 |
work_keys_str_mv | AT zhouxi flexibleandhighlysensitivepressuresensorsbasedonmicrostructuredcarbonnanowallselectrodes AT zhangyongna flexibleandhighlysensitivepressuresensorsbasedonmicrostructuredcarbonnanowallselectrodes AT yangjun flexibleandhighlysensitivepressuresensorsbasedonmicrostructuredcarbonnanowallselectrodes AT lijialu flexibleandhighlysensitivepressuresensorsbasedonmicrostructuredcarbonnanowallselectrodes AT luoshi flexibleandhighlysensitivepressuresensorsbasedonmicrostructuredcarbonnanowallselectrodes AT weidapeng flexibleandhighlysensitivepressuresensorsbasedonmicrostructuredcarbonnanowallselectrodes |