Cargando…

γ-Radiation Enhanced Luminescence of Thiol-Capped Quantum Dots in Aqueous Solution

Quantum dots (QDs) have attracted great attention due to their unique optical properties. High fluorescence efficiency is very important for their practical application. In this study, we report a simple and efficient strategy to enhance the photoluminescence of water-dispersed thiol-capped QDs usin...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Shuquan, Wu, Xian, Lan, Jianzhang, Li, Zheng, Zhang, Xiaohong, Zhang, Haiqian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6524157/
https://www.ncbi.nlm.nih.gov/pubmed/30986922
http://dx.doi.org/10.3390/nano9040506
Descripción
Sumario:Quantum dots (QDs) have attracted great attention due to their unique optical properties. High fluorescence efficiency is very important for their practical application. In this study, we report a simple and efficient strategy to enhance the photoluminescence of water-dispersed thiol-capped QDs using γ-radiation. Three kinds of QDs with different surface ligands and cores (MPA-CdTe, MPA-CdSe and Cys-CdTe) were fabricated and irradiated by high-energy γ-ray in an aqueous solution. Their photoluminescence intensities were significantly enhanced after irradiation, which were closely related to the radiation dose and the structure of QDs. The positions of the fluorescence emission peaks did not shift obviously after irradiation. The mechanism of photoluminescence enhancement was discussed based on the results of photoluminescence (PL) spectra, UV-visible light absorption (UV-vis) spectra, transmission electron microscope (TEM), X-ray diffraction (XRD) patterns, Fourier transform infrared (FT-IR) spectra and X-ray photoelectron spectroscopy (XPS). This method can be employed to uniformly treat large batches of QDs at room temperature and without other chemicals.