Cargando…
Development and evaluation of a jaw-tracking system for mice: reconstruction of three-dimensional movement trajectories on an arbitrary point on the mandible
BACKGROUND: Mastication is one of the most fundamental functions for the conservation of life. The demand for devices for evaluating stomatognathic function, for instance, recording mandibular movements or masticatory muscle activities using animal models, has been increasing in recent years to eluc...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6524240/ https://www.ncbi.nlm.nih.gov/pubmed/31096969 http://dx.doi.org/10.1186/s12938-019-0672-z |
_version_ | 1783419516626141184 |
---|---|
author | Moriuchi, Emi Hamanaka, Ryo Koga, Yoshiyuki Fujishita, Ayumi Yoshimi, Tomoko Yasuda, Go Kohara, Haruka Yoshida, Noriaki |
author_facet | Moriuchi, Emi Hamanaka, Ryo Koga, Yoshiyuki Fujishita, Ayumi Yoshimi, Tomoko Yasuda, Go Kohara, Haruka Yoshida, Noriaki |
author_sort | Moriuchi, Emi |
collection | PubMed |
description | BACKGROUND: Mastication is one of the most fundamental functions for the conservation of life. The demand for devices for evaluating stomatognathic function, for instance, recording mandibular movements or masticatory muscle activities using animal models, has been increasing in recent years to elucidate neuromuscular control mechanisms of mastication and to investigate the etiology of oral motor disorders. To identify the fundamental characteristics of the jaw movements of mice, we developed a new device that reconstructs the three-dimensional (3D) movement trajectories on an arbitrary point on the mandible during mastication. METHODS: First, jaw movements with six degrees of freedom were measured using a motion capture system comprising two high-speed cameras and four reflective markers. Second, a 3D model of the mandible including the markers was created from micro-computed tomography images. Then, the jaw movement trajectory on the certain anatomical point was reproduced by integrating the kinematic data of the jaw movements with the geometric data of the mandible. RESULTS: The 3D movements at any points on the mandible, such as the condyle, molar, and incisor during mastication, could be calculated and visualized with an accuracy > 0.041 mm in 3D space. The masticatory cycle was found to be clearly divided into three phases, namely, the opening, closing, and occlusal phases in mice. CONCLUSIONS: The proposed system can reproduce and visualize the movements of internal anatomical points such as condylar points precisely by combining kinematic data with geometric data. The findings obtained from this system could facilitate our understanding of the pathogenesis of eating disorders or other oral motor disorders when we could compare the parameters of stomatognathic function of normal mice and those of genetically modified mice with oral behavioral dysfunctions. |
format | Online Article Text |
id | pubmed-6524240 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-65242402019-05-24 Development and evaluation of a jaw-tracking system for mice: reconstruction of three-dimensional movement trajectories on an arbitrary point on the mandible Moriuchi, Emi Hamanaka, Ryo Koga, Yoshiyuki Fujishita, Ayumi Yoshimi, Tomoko Yasuda, Go Kohara, Haruka Yoshida, Noriaki Biomed Eng Online Research BACKGROUND: Mastication is one of the most fundamental functions for the conservation of life. The demand for devices for evaluating stomatognathic function, for instance, recording mandibular movements or masticatory muscle activities using animal models, has been increasing in recent years to elucidate neuromuscular control mechanisms of mastication and to investigate the etiology of oral motor disorders. To identify the fundamental characteristics of the jaw movements of mice, we developed a new device that reconstructs the three-dimensional (3D) movement trajectories on an arbitrary point on the mandible during mastication. METHODS: First, jaw movements with six degrees of freedom were measured using a motion capture system comprising two high-speed cameras and four reflective markers. Second, a 3D model of the mandible including the markers was created from micro-computed tomography images. Then, the jaw movement trajectory on the certain anatomical point was reproduced by integrating the kinematic data of the jaw movements with the geometric data of the mandible. RESULTS: The 3D movements at any points on the mandible, such as the condyle, molar, and incisor during mastication, could be calculated and visualized with an accuracy > 0.041 mm in 3D space. The masticatory cycle was found to be clearly divided into three phases, namely, the opening, closing, and occlusal phases in mice. CONCLUSIONS: The proposed system can reproduce and visualize the movements of internal anatomical points such as condylar points precisely by combining kinematic data with geometric data. The findings obtained from this system could facilitate our understanding of the pathogenesis of eating disorders or other oral motor disorders when we could compare the parameters of stomatognathic function of normal mice and those of genetically modified mice with oral behavioral dysfunctions. BioMed Central 2019-05-16 /pmc/articles/PMC6524240/ /pubmed/31096969 http://dx.doi.org/10.1186/s12938-019-0672-z Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Moriuchi, Emi Hamanaka, Ryo Koga, Yoshiyuki Fujishita, Ayumi Yoshimi, Tomoko Yasuda, Go Kohara, Haruka Yoshida, Noriaki Development and evaluation of a jaw-tracking system for mice: reconstruction of three-dimensional movement trajectories on an arbitrary point on the mandible |
title | Development and evaluation of a jaw-tracking system for mice: reconstruction of three-dimensional movement trajectories on an arbitrary point on the mandible |
title_full | Development and evaluation of a jaw-tracking system for mice: reconstruction of three-dimensional movement trajectories on an arbitrary point on the mandible |
title_fullStr | Development and evaluation of a jaw-tracking system for mice: reconstruction of three-dimensional movement trajectories on an arbitrary point on the mandible |
title_full_unstemmed | Development and evaluation of a jaw-tracking system for mice: reconstruction of three-dimensional movement trajectories on an arbitrary point on the mandible |
title_short | Development and evaluation of a jaw-tracking system for mice: reconstruction of three-dimensional movement trajectories on an arbitrary point on the mandible |
title_sort | development and evaluation of a jaw-tracking system for mice: reconstruction of three-dimensional movement trajectories on an arbitrary point on the mandible |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6524240/ https://www.ncbi.nlm.nih.gov/pubmed/31096969 http://dx.doi.org/10.1186/s12938-019-0672-z |
work_keys_str_mv | AT moriuchiemi developmentandevaluationofajawtrackingsystemformicereconstructionofthreedimensionalmovementtrajectoriesonanarbitrarypointonthemandible AT hamanakaryo developmentandevaluationofajawtrackingsystemformicereconstructionofthreedimensionalmovementtrajectoriesonanarbitrarypointonthemandible AT kogayoshiyuki developmentandevaluationofajawtrackingsystemformicereconstructionofthreedimensionalmovementtrajectoriesonanarbitrarypointonthemandible AT fujishitaayumi developmentandevaluationofajawtrackingsystemformicereconstructionofthreedimensionalmovementtrajectoriesonanarbitrarypointonthemandible AT yoshimitomoko developmentandevaluationofajawtrackingsystemformicereconstructionofthreedimensionalmovementtrajectoriesonanarbitrarypointonthemandible AT yasudago developmentandevaluationofajawtrackingsystemformicereconstructionofthreedimensionalmovementtrajectoriesonanarbitrarypointonthemandible AT koharaharuka developmentandevaluationofajawtrackingsystemformicereconstructionofthreedimensionalmovementtrajectoriesonanarbitrarypointonthemandible AT yoshidanoriaki developmentandevaluationofajawtrackingsystemformicereconstructionofthreedimensionalmovementtrajectoriesonanarbitrarypointonthemandible |