Cargando…

G-quadruplexes may determine the landscape of recombination in HSV-1

BACKGROUND: Several lines of evidence suggest that recombination plays a central role in replication and evolution of herpes simplex virus-1 (HSV-1). G-quadruplex (G4)-motifs have been linked to recombination events in human and microbial genomes, but their role in recombination has not been studied...

Descripción completa

Detalles Bibliográficos
Autores principales: Saranathan, Nandhini, Biswas, Banhi, Patra, Anupam, Vivekanandan, Perumal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6524338/
https://www.ncbi.nlm.nih.gov/pubmed/31096907
http://dx.doi.org/10.1186/s12864-019-5731-0
Descripción
Sumario:BACKGROUND: Several lines of evidence suggest that recombination plays a central role in replication and evolution of herpes simplex virus-1 (HSV-1). G-quadruplex (G4)-motifs have been linked to recombination events in human and microbial genomes, but their role in recombination has not been studied in DNA viruses. RESULTS: The availability of near full-length sequences from 40 HSV-1 recombinant strains with exact position of the recombination breakpoints provided us with a unique opportunity to investigate the role of G4-motifs in recombination among herpes viruses. We mapped the G4-motifs in the parental and all the 40 recombinant strains. Interestingly, the genome-wide distribution of breakpoints closely mirrors the G4 densities in the HSV-1 genome; regions of the genome with higher G4 densities had higher number of recombination breakpoints. Biophysical characterization of oligonucleotides from a subset of predicted G4-motifs confirmed the formation of G-quadruplex structures. Our analysis also reveals that G4-motifs are enriched in regions flanking the recombination breakpoints. Interestingly, about 11% of breakpoints lie within a G4-motif, making these DNA secondary structures hotspots for recombination in the HSV-1 genome. Breakpoints within G4-motifs predominantly lie within G4-clusters rather than individual G4-motifs. Of note, we identified the terminal guanosine of G4-clusters at the boundaries of the U(L) (unique long) region on either side of the OriL (origin of replication within U(L)) represented the commonest breakpoint among the HSV-1 recombinants. CONCLUSION: Our findings suggest a correlation between the HSV-1 recombination landscape and the distribution of G4-motifs and G4-clusters, with possible implications for the evolution of DNA viruses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-019-5731-0) contains supplementary material, which is available to authorized users.