Cargando…

Fatigue-Mediated Loss of Complexity is Contraction-Type Dependent in Vastus Lateralis Electromyographic Signals

The purpose of this study was to investigate the effect of fatigue status and contraction type on complexity of the surface electromyographic (sEMG) signal. Twelve females (mean age ± SD = 21.1 ± 1.4 years) performed three fatigue-inducing protocols that involved maximal concentric, eccentric, or is...

Descripción completa

Detalles Bibliográficos
Autores principales: Hernandez, Luis R., Camic, Clayton L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6524352/
https://www.ncbi.nlm.nih.gov/pubmed/30986944
http://dx.doi.org/10.3390/sports7040078
Descripción
Sumario:The purpose of this study was to investigate the effect of fatigue status and contraction type on complexity of the surface electromyographic (sEMG) signal. Twelve females (mean age ± SD = 21.1 ± 1.4 years) performed three fatigue-inducing protocols that involved maximal concentric, eccentric, or isometric knee-extensor contractions over three non-consecutive sessions. Pre- and post-fatigue assessments were also completed each session and consisted of three maximal efforts for each type of contraction. Complexity of sEMG signals from the vastus lateralis was assessed using Sample Entropy (SampEn) and Detrended Fluctuation Analysis (DFA) as expressed using the scaling exponent α. The results showed that fatigue decreased (p < 0.05) sEMG complexity as indicated by decreased SampEn (non-fatigued: 1.57 ± 0.22 > fatigued: 1.46 ± 0.25) and increased DFA α (non-fatigued: 1.27 ± 0.26 < fatigued: 1.32 ± 0.23). In addition, sEMG complexity was different among contraction types as indicated by SampEn (concentric: 1.58 ± 0.22 > eccentric: 1.47 ± 0.27 and isometric: 1.50 ± 0.21) and DFA α (concentric: 1.27 ± 0.18 < isometric: 1.32 ± 0.18). Thus, these findings suggested sEMG complexity is affected by fatigue status and contraction type, with the degree of fatigue-mediated loss of complexity dependent on the type of contraction used to elicit fatigue.