Cargando…
Neural Network Based Uncertainty Prediction for Autonomous Vehicle Application
This paper proposes a framework for uncertainty prediction in complex fusion networks, where signals become available sporadically. Assuming there is no information of the sensor characteristics available, a surrogated model of the sensor uncertainty is yielded directly from data through artificial...
Autores principales: | Zhang, Feihu, Martinez, Clara Marina, Clarke, Daniel, Cao, Dongpu, Knoll, Alois |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6524408/ https://www.ncbi.nlm.nih.gov/pubmed/31133839 http://dx.doi.org/10.3389/fnbot.2019.00012 |
Ejemplares similares
-
A Survey of Robotics Control Based on Learning-Inspired Spiking Neural Networks
por: Bing, Zhenshan, et al.
Publicado: (2018) -
Risk of Injury in Moral Dilemmas With Autonomous Vehicles
por: de Melo, Celso M., et al.
Publicado: (2021) -
Delivery of Healthcare Resources Using Autonomous Ground Vehicle Convoy Systems: An Overview
por: Cheung, Calvin, et al.
Publicado: (2021) -
Towards Energy-Aware Feedback Planning for Long-Range Autonomous Underwater Vehicles
por: Alam, Tauhidul, et al.
Publicado: (2021) -
CARMA II: A ground vehicle for autonomous surveying of alpha, beta and gamma radiation
por: Nouri Rahmat Abadi, Bahman, et al.
Publicado: (2023)