Cargando…

Carbon content-tuned martensite transformation in low-alloy TRIP steels

Ultrahigh strength and good ductility are obtained for two low-alloy transformation-induced-plasticity steels fabricated by the quenching and partitioning (Q&P) processing, respectively. Compared to 0.19 wt.% C steel in which γ → α′-martensite transformation is the dominant mechanism under defor...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Y. F., Dong, X. X., Song, X. T., Jia, N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525154/
https://www.ncbi.nlm.nih.gov/pubmed/31101836
http://dx.doi.org/10.1038/s41598-019-44105-6
Descripción
Sumario:Ultrahigh strength and good ductility are obtained for two low-alloy transformation-induced-plasticity steels fabricated by the quenching and partitioning (Q&P) processing, respectively. Compared to 0.19 wt.% C steel in which γ → α′-martensite transformation is the dominant mechanism under deformation, the relatively high C content of austenite in 0.47 wt.% C steel is responsible for the transformation from γ to ε-martensite, suggesting that the transformation is not solely determined by the stacking fault energy. The study shows that during the Q&P process, strong and ductile steels with specific transformation procedures can be obtained by adjusting volume fraction and carbon content of the retained austenite.