Cargando…
Isolation of a 3-hydroxypyridine degrading bacterium, Agrobacterium sp. DW-1, and its proposed degradation pathway
A 3-hydroxypyridine degrading bacterium, designated strain DW-1, was isolated from petroleum contaminated soil in Liao River China. 16S rRNA-based phylogenetic analysis indicates that strain DW-1 belongs to genus Agrobacterium. The optimal cultivation temperature and pH for strain DW-1 with 3-hydrox...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525221/ https://www.ncbi.nlm.nih.gov/pubmed/31102032 http://dx.doi.org/10.1186/s13568-019-0782-9 |
Sumario: | A 3-hydroxypyridine degrading bacterium, designated strain DW-1, was isolated from petroleum contaminated soil in Liao River China. 16S rRNA-based phylogenetic analysis indicates that strain DW-1 belongs to genus Agrobacterium. The optimal cultivation temperature and pH for strain DW-1 with 3-hydroxypyridine were 30 °C and 8.0, respectively. Under optimal conditions, strain DW-1 could completely degrade up to 1500 mg/L of 3-hydroxypyridine in 66 h. The 3-hydroxypyridine degradation pathway of strain DW-1 was suggested by HPLC and LC–MS analysis. The first reaction of 3-hydroxypyridine degradation in strain DW-1 was α-hydroxylation so that the major metabolite 2,5-dihydroxypyridine was produced, and then 2,5-dihydroxypyridine was transformed by a Fe(2+)-dependent dioxygenase to form N-formylmaleamic acid. N-Formylmaleamic acid will be transformed to maleic acid and fumaric acid through maleamic acid. This is the first report of the 3-hydroxypyridine degradation pathway and the utilization of 3-hydroxypyridine by a Agrobacterium sp. It may be potentially used for the bioremediation of environments polluted with 3-hydroxypyridine. |
---|