Cargando…

The effect of resistance training interventions on fundamental movement skills in youth: a meta-analysis

BACKGROUND: Fundamental movement skills (FMS) are strongly related to physical activity (PA) in childhood and beyond. To develop FMS, resistance training (RT) may be a favourable intervention strategy. The purpose of this meta-analysis was to systematically examine the effect of RT interventions on...

Descripción completa

Detalles Bibliográficos
Autores principales: Collins, Helen, Booth, Josephine N., Duncan, Audrey, Fawkner, Samantha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525228/
https://www.ncbi.nlm.nih.gov/pubmed/31102027
http://dx.doi.org/10.1186/s40798-019-0188-x
Descripción
Sumario:BACKGROUND: Fundamental movement skills (FMS) are strongly related to physical activity (PA) in childhood and beyond. To develop FMS, resistance training (RT) may be a favourable intervention strategy. The purpose of this meta-analysis was to systematically examine the effect of RT interventions on FMS in youth. METHODS: Meta-analysis followed the PRISMA guidelines (Prospero registration number CRD42016038365). Electronic literature databases were searched from the year of their inception up to and including June 2017. The search strategy aimed to return studies that included product and process-oriented measures as a means of assessing FMS. Studies from English language peer-reviewed published articles that examined the effect of RT on indicators of FMS in youth, with participants of school age (5–18 years) were included. RESULTS: Thirty-three data sets were included exploring five outcomes related to FMS. Studies included only reported product-oriented outcomes. Significant intervention effects were identified for: sprint (Hedges’ g = 0.292, 95% CI 0.017 to 0.567, P = 0.038), squat jump (Hedges’ g = 0.730, 95% CI 0.374 to 1.085, P = < 0.001), standing long jump (Hedges’ g = 0.298, 95% CI 0.096 to 0.499, P = 0.004), throw (Hedges’ g = 0.405, 95% CI 0.094 to 0.717, P = 0.011) and vertical jump (Hedges’ g = 0.407, 95% CI 0.251 to 0.564, P = < 0.001). There was variable quality of studies, with 33.3% being classified as ‘strong’. CONCLUSION: RT has a positive impact on indicators of FMS in youth but more high-quality studies should be conducted to further investigate the role RT may play in the development of FMS. Additionally, to more comprehensively evaluate the impact of RT on FMS, there is a need for FMS assessments that measure both process- and product-oriented outcomes.