Cargando…
Analysis of haloarchaeal twin-arginine translocase pathway reveals the diversity of the machineries
The twin-arginine translocase (Tat) pathway transports folded proteins across the plasma membrane and plays a critical role in protein transport in haloarchaea. Computational analysis and previous experimental evidence suggested that the Tat pathway transports almost the entire secretome in haloarch...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525301/ https://www.ncbi.nlm.nih.gov/pubmed/31193317 http://dx.doi.org/10.1016/j.heliyon.2019.e01587 |
_version_ | 1783419699911983104 |
---|---|
author | Ghosh, Deepanjan Boral, Debjyoti Vankudoth, Koteswara Rao Ramasamy, Sureshkumar |
author_facet | Ghosh, Deepanjan Boral, Debjyoti Vankudoth, Koteswara Rao Ramasamy, Sureshkumar |
author_sort | Ghosh, Deepanjan |
collection | PubMed |
description | The twin-arginine translocase (Tat) pathway transports folded proteins across the plasma membrane and plays a critical role in protein transport in haloarchaea. Computational analysis and previous experimental evidence suggested that the Tat pathway transports almost the entire secretome in haloarchaea. The TatC, receptor component of this pathway shows greater variation in membrane topology in haloarchaea than in other organisms. The presence of a unique fourteen-transmembrane TatC homolog (TatC(t)) in haloarchaea, over and above the expected TatC topological variants, indicates a strong correlation between the additional homologs and the large number of substrates transported via the haloarchaeal Tat pathway. Various combinations of TatC homologs with different topologies—TatC(o), TatC(t), TatC(n), and TatC(x) have been observed in haloarchaea. In this report, on the basis of these combinations we have segregated all haloarchaeal Tat substrates into two groups. The first group consists of substrates that are transported by TatC(t) alone, whereas the second group consists of substrates that are transported by the other TatC homologs (TatC(o), TatC(n), and TatC(x)). The various haloarchaea TatA components also shows the possible segregation towards the substrates. We have also identified the possible homologs for Tat substrate chaperones, which act as a quality-control mechanism for proper protein folding. Further sequence analysis implies that the two TatC domains of TatC(t) complement each other's functionally. Substrate analysis also revealed subtle differences between the substrates being transported by various homologs: further experimental analysis is therefore required for better understanding of the complexities of the haloarchaeal Tat pathway. |
format | Online Article Text |
id | pubmed-6525301 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-65253012019-05-28 Analysis of haloarchaeal twin-arginine translocase pathway reveals the diversity of the machineries Ghosh, Deepanjan Boral, Debjyoti Vankudoth, Koteswara Rao Ramasamy, Sureshkumar Heliyon Article The twin-arginine translocase (Tat) pathway transports folded proteins across the plasma membrane and plays a critical role in protein transport in haloarchaea. Computational analysis and previous experimental evidence suggested that the Tat pathway transports almost the entire secretome in haloarchaea. The TatC, receptor component of this pathway shows greater variation in membrane topology in haloarchaea than in other organisms. The presence of a unique fourteen-transmembrane TatC homolog (TatC(t)) in haloarchaea, over and above the expected TatC topological variants, indicates a strong correlation between the additional homologs and the large number of substrates transported via the haloarchaeal Tat pathway. Various combinations of TatC homologs with different topologies—TatC(o), TatC(t), TatC(n), and TatC(x) have been observed in haloarchaea. In this report, on the basis of these combinations we have segregated all haloarchaeal Tat substrates into two groups. The first group consists of substrates that are transported by TatC(t) alone, whereas the second group consists of substrates that are transported by the other TatC homologs (TatC(o), TatC(n), and TatC(x)). The various haloarchaea TatA components also shows the possible segregation towards the substrates. We have also identified the possible homologs for Tat substrate chaperones, which act as a quality-control mechanism for proper protein folding. Further sequence analysis implies that the two TatC domains of TatC(t) complement each other's functionally. Substrate analysis also revealed subtle differences between the substrates being transported by various homologs: further experimental analysis is therefore required for better understanding of the complexities of the haloarchaeal Tat pathway. Elsevier 2019-05-15 /pmc/articles/PMC6525301/ /pubmed/31193317 http://dx.doi.org/10.1016/j.heliyon.2019.e01587 Text en © 2019 Published by Elsevier Ltd. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Ghosh, Deepanjan Boral, Debjyoti Vankudoth, Koteswara Rao Ramasamy, Sureshkumar Analysis of haloarchaeal twin-arginine translocase pathway reveals the diversity of the machineries |
title | Analysis of haloarchaeal twin-arginine translocase pathway reveals the diversity of the machineries |
title_full | Analysis of haloarchaeal twin-arginine translocase pathway reveals the diversity of the machineries |
title_fullStr | Analysis of haloarchaeal twin-arginine translocase pathway reveals the diversity of the machineries |
title_full_unstemmed | Analysis of haloarchaeal twin-arginine translocase pathway reveals the diversity of the machineries |
title_short | Analysis of haloarchaeal twin-arginine translocase pathway reveals the diversity of the machineries |
title_sort | analysis of haloarchaeal twin-arginine translocase pathway reveals the diversity of the machineries |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525301/ https://www.ncbi.nlm.nih.gov/pubmed/31193317 http://dx.doi.org/10.1016/j.heliyon.2019.e01587 |
work_keys_str_mv | AT ghoshdeepanjan analysisofhaloarchaealtwinargininetranslocasepathwayrevealsthediversityofthemachineries AT boraldebjyoti analysisofhaloarchaealtwinargininetranslocasepathwayrevealsthediversityofthemachineries AT vankudothkoteswararao analysisofhaloarchaealtwinargininetranslocasepathwayrevealsthediversityofthemachineries AT ramasamysureshkumar analysisofhaloarchaealtwinargininetranslocasepathwayrevealsthediversityofthemachineries |