Cargando…
Molecular dynamics simulation-guided drug sensitivity prediction for lung cancer with rare EGFR mutations
Next generation sequencing (NGS)-based tumor profiling identified an overwhelming number of uncharacterized somatic mutations, also known as variants of unknown significance (VUS). The therapeutic significance of EGFR mutations outside mutational hotspots, consisting of >50 types, in nonsmall cel...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525482/ https://www.ncbi.nlm.nih.gov/pubmed/31043566 http://dx.doi.org/10.1073/pnas.1819430116 |
_version_ | 1783419738485948416 |
---|---|
author | Ikemura, Shinnosuke Yasuda, Hiroyuki Matsumoto, Shingo Kamada, Mayumi Hamamoto, Junko Masuzawa, Keita Kobayashi, Keigo Manabe, Tadashi Arai, Daisuke Nakachi, Ichiro Kawada, Ichiro Ishioka, Kota Nakamura, Morio Namkoong, Ho Naoki, Katsuhiko Ono, Fumie Araki, Mitsugu Kanada, Ryo Ma, Biao Hayashi, Yuichiro Mimaki, Sachiyo Yoh, Kiyotaka Kobayashi, Susumu S. Kohno, Takashi Okuno, Yasushi Goto, Koichi Tsuchihara, Katsuya Soejima, Kenzo |
author_facet | Ikemura, Shinnosuke Yasuda, Hiroyuki Matsumoto, Shingo Kamada, Mayumi Hamamoto, Junko Masuzawa, Keita Kobayashi, Keigo Manabe, Tadashi Arai, Daisuke Nakachi, Ichiro Kawada, Ichiro Ishioka, Kota Nakamura, Morio Namkoong, Ho Naoki, Katsuhiko Ono, Fumie Araki, Mitsugu Kanada, Ryo Ma, Biao Hayashi, Yuichiro Mimaki, Sachiyo Yoh, Kiyotaka Kobayashi, Susumu S. Kohno, Takashi Okuno, Yasushi Goto, Koichi Tsuchihara, Katsuya Soejima, Kenzo |
author_sort | Ikemura, Shinnosuke |
collection | PubMed |
description | Next generation sequencing (NGS)-based tumor profiling identified an overwhelming number of uncharacterized somatic mutations, also known as variants of unknown significance (VUS). The therapeutic significance of EGFR mutations outside mutational hotspots, consisting of >50 types, in nonsmall cell lung carcinoma (NSCLC) is largely unknown. In fact, our pan-nation screening of NSCLC without hotspot EGFR mutations (n = 3,779) revealed that the majority (>90%) of cases with rare EGFR mutations, accounting for 5.5% of the cohort subjects, did not receive EGFR-tyrosine kinase inhibitors (TKIs) as a first-line treatment. To tackle this problem, we applied a molecular dynamics simulation-based model to predict the sensitivity of rare EGFR mutants to EGFR-TKIs. The model successfully predicted the diverse in vitro and in vivo sensitivities of exon 20 insertion mutants, including a singleton, to osimertinib, a third-generation EGFR-TKI (R(2) = 0.72, P = 0.0037). Additionally, our model showed a higher consistency with experimentally obtained sensitivity data than other prediction approaches, indicating its robustness in analyzing complex cancer mutations. Thus, the in silico prediction model will be a powerful tool in precision medicine for NSCLC patients carrying rare EGFR mutations in the clinical setting. Here, we propose an insight to overcome mutation diversity in lung cancer. |
format | Online Article Text |
id | pubmed-6525482 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-65254822019-05-28 Molecular dynamics simulation-guided drug sensitivity prediction for lung cancer with rare EGFR mutations Ikemura, Shinnosuke Yasuda, Hiroyuki Matsumoto, Shingo Kamada, Mayumi Hamamoto, Junko Masuzawa, Keita Kobayashi, Keigo Manabe, Tadashi Arai, Daisuke Nakachi, Ichiro Kawada, Ichiro Ishioka, Kota Nakamura, Morio Namkoong, Ho Naoki, Katsuhiko Ono, Fumie Araki, Mitsugu Kanada, Ryo Ma, Biao Hayashi, Yuichiro Mimaki, Sachiyo Yoh, Kiyotaka Kobayashi, Susumu S. Kohno, Takashi Okuno, Yasushi Goto, Koichi Tsuchihara, Katsuya Soejima, Kenzo Proc Natl Acad Sci U S A Biological Sciences Next generation sequencing (NGS)-based tumor profiling identified an overwhelming number of uncharacterized somatic mutations, also known as variants of unknown significance (VUS). The therapeutic significance of EGFR mutations outside mutational hotspots, consisting of >50 types, in nonsmall cell lung carcinoma (NSCLC) is largely unknown. In fact, our pan-nation screening of NSCLC without hotspot EGFR mutations (n = 3,779) revealed that the majority (>90%) of cases with rare EGFR mutations, accounting for 5.5% of the cohort subjects, did not receive EGFR-tyrosine kinase inhibitors (TKIs) as a first-line treatment. To tackle this problem, we applied a molecular dynamics simulation-based model to predict the sensitivity of rare EGFR mutants to EGFR-TKIs. The model successfully predicted the diverse in vitro and in vivo sensitivities of exon 20 insertion mutants, including a singleton, to osimertinib, a third-generation EGFR-TKI (R(2) = 0.72, P = 0.0037). Additionally, our model showed a higher consistency with experimentally obtained sensitivity data than other prediction approaches, indicating its robustness in analyzing complex cancer mutations. Thus, the in silico prediction model will be a powerful tool in precision medicine for NSCLC patients carrying rare EGFR mutations in the clinical setting. Here, we propose an insight to overcome mutation diversity in lung cancer. National Academy of Sciences 2019-05-14 2019-05-01 /pmc/articles/PMC6525482/ /pubmed/31043566 http://dx.doi.org/10.1073/pnas.1819430116 Text en Copyright © 2019 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Ikemura, Shinnosuke Yasuda, Hiroyuki Matsumoto, Shingo Kamada, Mayumi Hamamoto, Junko Masuzawa, Keita Kobayashi, Keigo Manabe, Tadashi Arai, Daisuke Nakachi, Ichiro Kawada, Ichiro Ishioka, Kota Nakamura, Morio Namkoong, Ho Naoki, Katsuhiko Ono, Fumie Araki, Mitsugu Kanada, Ryo Ma, Biao Hayashi, Yuichiro Mimaki, Sachiyo Yoh, Kiyotaka Kobayashi, Susumu S. Kohno, Takashi Okuno, Yasushi Goto, Koichi Tsuchihara, Katsuya Soejima, Kenzo Molecular dynamics simulation-guided drug sensitivity prediction for lung cancer with rare EGFR mutations |
title | Molecular dynamics simulation-guided drug sensitivity prediction for lung cancer with rare EGFR mutations |
title_full | Molecular dynamics simulation-guided drug sensitivity prediction for lung cancer with rare EGFR mutations |
title_fullStr | Molecular dynamics simulation-guided drug sensitivity prediction for lung cancer with rare EGFR mutations |
title_full_unstemmed | Molecular dynamics simulation-guided drug sensitivity prediction for lung cancer with rare EGFR mutations |
title_short | Molecular dynamics simulation-guided drug sensitivity prediction for lung cancer with rare EGFR mutations |
title_sort | molecular dynamics simulation-guided drug sensitivity prediction for lung cancer with rare egfr mutations |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525482/ https://www.ncbi.nlm.nih.gov/pubmed/31043566 http://dx.doi.org/10.1073/pnas.1819430116 |
work_keys_str_mv | AT ikemurashinnosuke moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT yasudahiroyuki moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT matsumotoshingo moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT kamadamayumi moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT hamamotojunko moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT masuzawakeita moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT kobayashikeigo moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT manabetadashi moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT araidaisuke moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT nakachiichiro moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT kawadaichiro moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT ishiokakota moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT nakamuramorio moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT namkoongho moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT naokikatsuhiko moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT onofumie moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT arakimitsugu moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT kanadaryo moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT mabiao moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT hayashiyuichiro moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT mimakisachiyo moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT yohkiyotaka moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT kobayashisusumus moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT kohnotakashi moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT okunoyasushi moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT gotokoichi moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT tsuchiharakatsuya moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations AT soejimakenzo moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations |