Cargando…

Molecular dynamics simulation-guided drug sensitivity prediction for lung cancer with rare EGFR mutations

Next generation sequencing (NGS)-based tumor profiling identified an overwhelming number of uncharacterized somatic mutations, also known as variants of unknown significance (VUS). The therapeutic significance of EGFR mutations outside mutational hotspots, consisting of >50 types, in nonsmall cel...

Descripción completa

Detalles Bibliográficos
Autores principales: Ikemura, Shinnosuke, Yasuda, Hiroyuki, Matsumoto, Shingo, Kamada, Mayumi, Hamamoto, Junko, Masuzawa, Keita, Kobayashi, Keigo, Manabe, Tadashi, Arai, Daisuke, Nakachi, Ichiro, Kawada, Ichiro, Ishioka, Kota, Nakamura, Morio, Namkoong, Ho, Naoki, Katsuhiko, Ono, Fumie, Araki, Mitsugu, Kanada, Ryo, Ma, Biao, Hayashi, Yuichiro, Mimaki, Sachiyo, Yoh, Kiyotaka, Kobayashi, Susumu S., Kohno, Takashi, Okuno, Yasushi, Goto, Koichi, Tsuchihara, Katsuya, Soejima, Kenzo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525482/
https://www.ncbi.nlm.nih.gov/pubmed/31043566
http://dx.doi.org/10.1073/pnas.1819430116
_version_ 1783419738485948416
author Ikemura, Shinnosuke
Yasuda, Hiroyuki
Matsumoto, Shingo
Kamada, Mayumi
Hamamoto, Junko
Masuzawa, Keita
Kobayashi, Keigo
Manabe, Tadashi
Arai, Daisuke
Nakachi, Ichiro
Kawada, Ichiro
Ishioka, Kota
Nakamura, Morio
Namkoong, Ho
Naoki, Katsuhiko
Ono, Fumie
Araki, Mitsugu
Kanada, Ryo
Ma, Biao
Hayashi, Yuichiro
Mimaki, Sachiyo
Yoh, Kiyotaka
Kobayashi, Susumu S.
Kohno, Takashi
Okuno, Yasushi
Goto, Koichi
Tsuchihara, Katsuya
Soejima, Kenzo
author_facet Ikemura, Shinnosuke
Yasuda, Hiroyuki
Matsumoto, Shingo
Kamada, Mayumi
Hamamoto, Junko
Masuzawa, Keita
Kobayashi, Keigo
Manabe, Tadashi
Arai, Daisuke
Nakachi, Ichiro
Kawada, Ichiro
Ishioka, Kota
Nakamura, Morio
Namkoong, Ho
Naoki, Katsuhiko
Ono, Fumie
Araki, Mitsugu
Kanada, Ryo
Ma, Biao
Hayashi, Yuichiro
Mimaki, Sachiyo
Yoh, Kiyotaka
Kobayashi, Susumu S.
Kohno, Takashi
Okuno, Yasushi
Goto, Koichi
Tsuchihara, Katsuya
Soejima, Kenzo
author_sort Ikemura, Shinnosuke
collection PubMed
description Next generation sequencing (NGS)-based tumor profiling identified an overwhelming number of uncharacterized somatic mutations, also known as variants of unknown significance (VUS). The therapeutic significance of EGFR mutations outside mutational hotspots, consisting of >50 types, in nonsmall cell lung carcinoma (NSCLC) is largely unknown. In fact, our pan-nation screening of NSCLC without hotspot EGFR mutations (n = 3,779) revealed that the majority (>90%) of cases with rare EGFR mutations, accounting for 5.5% of the cohort subjects, did not receive EGFR-tyrosine kinase inhibitors (TKIs) as a first-line treatment. To tackle this problem, we applied a molecular dynamics simulation-based model to predict the sensitivity of rare EGFR mutants to EGFR-TKIs. The model successfully predicted the diverse in vitro and in vivo sensitivities of exon 20 insertion mutants, including a singleton, to osimertinib, a third-generation EGFR-TKI (R(2) = 0.72, P = 0.0037). Additionally, our model showed a higher consistency with experimentally obtained sensitivity data than other prediction approaches, indicating its robustness in analyzing complex cancer mutations. Thus, the in silico prediction model will be a powerful tool in precision medicine for NSCLC patients carrying rare EGFR mutations in the clinical setting. Here, we propose an insight to overcome mutation diversity in lung cancer.
format Online
Article
Text
id pubmed-6525482
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-65254822019-05-28 Molecular dynamics simulation-guided drug sensitivity prediction for lung cancer with rare EGFR mutations Ikemura, Shinnosuke Yasuda, Hiroyuki Matsumoto, Shingo Kamada, Mayumi Hamamoto, Junko Masuzawa, Keita Kobayashi, Keigo Manabe, Tadashi Arai, Daisuke Nakachi, Ichiro Kawada, Ichiro Ishioka, Kota Nakamura, Morio Namkoong, Ho Naoki, Katsuhiko Ono, Fumie Araki, Mitsugu Kanada, Ryo Ma, Biao Hayashi, Yuichiro Mimaki, Sachiyo Yoh, Kiyotaka Kobayashi, Susumu S. Kohno, Takashi Okuno, Yasushi Goto, Koichi Tsuchihara, Katsuya Soejima, Kenzo Proc Natl Acad Sci U S A Biological Sciences Next generation sequencing (NGS)-based tumor profiling identified an overwhelming number of uncharacterized somatic mutations, also known as variants of unknown significance (VUS). The therapeutic significance of EGFR mutations outside mutational hotspots, consisting of >50 types, in nonsmall cell lung carcinoma (NSCLC) is largely unknown. In fact, our pan-nation screening of NSCLC without hotspot EGFR mutations (n = 3,779) revealed that the majority (>90%) of cases with rare EGFR mutations, accounting for 5.5% of the cohort subjects, did not receive EGFR-tyrosine kinase inhibitors (TKIs) as a first-line treatment. To tackle this problem, we applied a molecular dynamics simulation-based model to predict the sensitivity of rare EGFR mutants to EGFR-TKIs. The model successfully predicted the diverse in vitro and in vivo sensitivities of exon 20 insertion mutants, including a singleton, to osimertinib, a third-generation EGFR-TKI (R(2) = 0.72, P = 0.0037). Additionally, our model showed a higher consistency with experimentally obtained sensitivity data than other prediction approaches, indicating its robustness in analyzing complex cancer mutations. Thus, the in silico prediction model will be a powerful tool in precision medicine for NSCLC patients carrying rare EGFR mutations in the clinical setting. Here, we propose an insight to overcome mutation diversity in lung cancer. National Academy of Sciences 2019-05-14 2019-05-01 /pmc/articles/PMC6525482/ /pubmed/31043566 http://dx.doi.org/10.1073/pnas.1819430116 Text en Copyright © 2019 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Ikemura, Shinnosuke
Yasuda, Hiroyuki
Matsumoto, Shingo
Kamada, Mayumi
Hamamoto, Junko
Masuzawa, Keita
Kobayashi, Keigo
Manabe, Tadashi
Arai, Daisuke
Nakachi, Ichiro
Kawada, Ichiro
Ishioka, Kota
Nakamura, Morio
Namkoong, Ho
Naoki, Katsuhiko
Ono, Fumie
Araki, Mitsugu
Kanada, Ryo
Ma, Biao
Hayashi, Yuichiro
Mimaki, Sachiyo
Yoh, Kiyotaka
Kobayashi, Susumu S.
Kohno, Takashi
Okuno, Yasushi
Goto, Koichi
Tsuchihara, Katsuya
Soejima, Kenzo
Molecular dynamics simulation-guided drug sensitivity prediction for lung cancer with rare EGFR mutations
title Molecular dynamics simulation-guided drug sensitivity prediction for lung cancer with rare EGFR mutations
title_full Molecular dynamics simulation-guided drug sensitivity prediction for lung cancer with rare EGFR mutations
title_fullStr Molecular dynamics simulation-guided drug sensitivity prediction for lung cancer with rare EGFR mutations
title_full_unstemmed Molecular dynamics simulation-guided drug sensitivity prediction for lung cancer with rare EGFR mutations
title_short Molecular dynamics simulation-guided drug sensitivity prediction for lung cancer with rare EGFR mutations
title_sort molecular dynamics simulation-guided drug sensitivity prediction for lung cancer with rare egfr mutations
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525482/
https://www.ncbi.nlm.nih.gov/pubmed/31043566
http://dx.doi.org/10.1073/pnas.1819430116
work_keys_str_mv AT ikemurashinnosuke moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT yasudahiroyuki moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT matsumotoshingo moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT kamadamayumi moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT hamamotojunko moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT masuzawakeita moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT kobayashikeigo moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT manabetadashi moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT araidaisuke moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT nakachiichiro moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT kawadaichiro moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT ishiokakota moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT nakamuramorio moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT namkoongho moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT naokikatsuhiko moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT onofumie moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT arakimitsugu moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT kanadaryo moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT mabiao moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT hayashiyuichiro moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT mimakisachiyo moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT yohkiyotaka moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT kobayashisusumus moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT kohnotakashi moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT okunoyasushi moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT gotokoichi moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT tsuchiharakatsuya moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations
AT soejimakenzo moleculardynamicssimulationguideddrugsensitivitypredictionforlungcancerwithrareegfrmutations