Cargando…

In Vivo Formation of Stable Hyaline Cartilage by Naïve Human Bone Marrow Stromal Cells with Modified Fibrin Microbeads

Osteoarthritic and other types of articular cartilage defects never heal on their own. Medicinal and surgical approaches are often ineffective, and the supply of autologous chondrocytes for tissue engineering is very limited. Bone marrow stromal cells (BMSCs, also known as bone marrow‐derived mesenc...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuznetsov, Sergei A., Hailu‐Lazmi, Astar, Cherman, Natasha, de Castro, Luis F., Robey, Pamela G., Gorodetsky, Raphael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525579/
https://www.ncbi.nlm.nih.gov/pubmed/30767420
http://dx.doi.org/10.1002/sctm.18-0129
Descripción
Sumario:Osteoarthritic and other types of articular cartilage defects never heal on their own. Medicinal and surgical approaches are often ineffective, and the supply of autologous chondrocytes for tissue engineering is very limited. Bone marrow stromal cells (BMSCs, also known as bone marrow‐derived mesenchymal stem cells) have been suggested as an adequate cell source for cartilage reconstruction. However, the majority of studies employing BMSCs for cartilage tissue engineering have used BMSCs predifferentiated into cartilage prior to implantation. This strategy has failed to achieve formation of stable, hyaline‐like cartilage, resistant to hypertrophy in vivo. We hypothesized that in vitro predifferentiation of BMSCs is not necessary when cells are combined with an adequate scaffold that supports the formation of stable cartilage in vivo. In this study, naïve (undifferentiated) human BMSCs were attached to dehydrothermally crosslinked stable fibrin microbeads (FMBs) without and with other scaffolds and implanted subcutaneously into immunocompromised mice. Optimal formation of abundant, hypertrophy‐resistant, ectopic hyaline‐like cartilage was achieved when BMSCs were attached to FMBs covalently coated with hyaluronic acid. The cartilage that was formed was of human origin and was stable for at least 28 weeks in vivo. stem cells translational medicine 2019;8:586–592