Cargando…

Increased Cortical Thickness in Attentional Networks in Parkinson's Disease with Minor Hallucinations

Hallucinations are common in Parkinson's disease (PD). Based on functional brain MRI data, hallucinations are proposed to result from alterations in the dorsal attention network (DAN), ventral attention network (VAN), and default mode network. Using structural MRI data from Parkinson's Pro...

Descripción completa

Detalles Bibliográficos
Autores principales: Sawczak, Caspian M., Barnett, Alexander J., Cohn, Melanie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525808/
https://www.ncbi.nlm.nih.gov/pubmed/31191901
http://dx.doi.org/10.1155/2019/5351749
Descripción
Sumario:Hallucinations are common in Parkinson's disease (PD). Based on functional brain MRI data, hallucinations are proposed to result from alterations in the dorsal attention network (DAN), ventral attention network (VAN), and default mode network. Using structural MRI data from Parkinson's Progression Markers Initiative (PPMI), we examined cortical thickness in these networks in PD patients with (n=30) and without (n=30) minor hallucinations who were matched on multiple clinical characteristics (e.g., age, sex, education, cognitive diagnosis, MoCA score, medication, disease duration, and severity) as well as healthy controls (n=30) matched on demographic variables. Multivariate analyses revealed mild hallucinations to be associated with thicker cortex in the DAN and VAN, and these effects were driven by the left superior precentral sulcus and postcentral sulcus for the DAN and by the right insular gyrus for the VAN. While these findings may seem at odds with prior work showing grey matter reductions, our patients are in earlier stages of the disease than those in other studies. This is consistent with an inverted U-shape pattern of cortical thickness alterations in other neurodegenerative diseases and warrants further investigations in longitudinal studies tracking brain correlates of PD psychosis progression.