Cargando…

An Opposition-Based Evolutionary Algorithm for Many-Objective Optimization with Adaptive Clustering Mechanism

Balancing convergence and diversity has become a key point especially in many-objective optimization where the large numbers of objectives pose many challenges to the evolutionary algorithms. In this paper, an opposition-based evolutionary algorithm with the adaptive clustering mechanism is proposed...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Wan Liang, Li, Weikun, Wang, Yu Le
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525897/
https://www.ncbi.nlm.nih.gov/pubmed/31191632
http://dx.doi.org/10.1155/2019/5126239
Descripción
Sumario:Balancing convergence and diversity has become a key point especially in many-objective optimization where the large numbers of objectives pose many challenges to the evolutionary algorithms. In this paper, an opposition-based evolutionary algorithm with the adaptive clustering mechanism is proposed for solving the complex optimization problem. In particular, opposition-based learning is integrated in the proposed algorithm to initialize the solution, and the nondominated sorting scheme with a new adaptive clustering mechanism is adopted in the environmental selection phase to ensure both convergence and diversity. The proposed method is compared with other nine evolutionary algorithms on a number of test problems with up to fifteen objectives, which verify the best performance of the proposed algorithm. Also, the algorithm is applied to a variety of multiobjective engineering optimization problems. The experimental results have shown the competitiveness and effectiveness of our proposed algorithm in solving challenging real-world problems.