Cargando…
An Opposition-Based Evolutionary Algorithm for Many-Objective Optimization with Adaptive Clustering Mechanism
Balancing convergence and diversity has become a key point especially in many-objective optimization where the large numbers of objectives pose many challenges to the evolutionary algorithms. In this paper, an opposition-based evolutionary algorithm with the adaptive clustering mechanism is proposed...
Autores principales: | Wang, Wan Liang, Li, Weikun, Wang, Yu Le |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525897/ https://www.ncbi.nlm.nih.gov/pubmed/31191632 http://dx.doi.org/10.1155/2019/5126239 |
Ejemplares similares
-
Hybrid selection based multi/many-objective evolutionary algorithm
por: Dutta, Saykat, et al.
Publicado: (2022) -
Multi/Many-Objective Particle Swarm Optimization Algorithm Based on Competition Mechanism
por: Yang, Wusi, et al.
Publicado: (2020) -
Decomposition and adaptive weight adjustment method with biogeography/complex algorithm for many-objective optimization
por: Chen, Wang, et al.
Publicado: (2020) -
A Many-Objective Evolutionary Algorithm Based on Dual Selection Strategy
por: Peng, Cheng, et al.
Publicado: (2023) -
Many-objective African vulture optimization algorithm: A novel approach for many-objective problems
por: Askr, Heba, et al.
Publicado: (2023)