Cargando…

GSK-3β at the Intersection of Neuronal Plasticity and Neurodegeneration

In neurons, Glycogen Synthase Kinase-3β (GSK-3β) has been shown to regulate various critical processes underlying structural and functional synaptic plasticity. Mouse models with neuron-selective expression or deletion of GSK-3β present behavioral and cognitive abnormalities, positioning this protei...

Descripción completa

Detalles Bibliográficos
Autores principales: Jaworski, Tomasz, Banach-Kasper, Ewa, Gralec, Katarzyna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525914/
https://www.ncbi.nlm.nih.gov/pubmed/31191636
http://dx.doi.org/10.1155/2019/4209475
Descripción
Sumario:In neurons, Glycogen Synthase Kinase-3β (GSK-3β) has been shown to regulate various critical processes underlying structural and functional synaptic plasticity. Mouse models with neuron-selective expression or deletion of GSK-3β present behavioral and cognitive abnormalities, positioning this protein kinase as a key signaling molecule in normal brain functioning. Furthermore, mouse models with defective GSK-3β activity display distinct structural and behavioral abnormalities, which model some aspects of different neurological and neuropsychiatric disorders. Equalizing GSK-3β activity in these mouse models by genetic or pharmacological interventions is able to rescue some of these abnormalities. Thus, GSK-3β is a relevant therapeutic target for the treatment of many brain disorders. Here, we provide an overview of how GSK-3β is regulated in physiological synaptic plasticity and how aberrant GSK-3β activity contributes to the development of dysfunctional synaptic plasticity in neuropsychiatric and neurodegenerative disorders.