Cargando…
An Incremental Version of L-MVU for the Feature Extraction of MI-EEG
Due to the nonlinear and high-dimensional characteristics of motor imagery electroencephalography (MI-EEG), it can be challenging to get high online accuracy. As a nonlinear dimension reduction method, landmark maximum variance unfolding (L-MVU) can completely retain the nonlinear features of MI-EEG...
Autores principales: | Li, Mingai, Xi, Hongwei, Zhu, Xiaoqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525943/ https://www.ncbi.nlm.nih.gov/pubmed/31191631 http://dx.doi.org/10.1155/2019/4317078 |
Ejemplares similares
-
An Improved Composite Multiscale Fuzzy Entropy for Feature Extraction of MI-EEG
por: Li, Mingai, et al.
Publicado: (2020) -
An Improved Refined Composite Multivariate Multiscale Fuzzy Entropy Method for MI-EEG Feature Extraction
por: Li, Mingai, et al.
Publicado: (2019) -
A dynamic directed transfer function for brain functional network-based feature extraction
por: Li, Mingai, et al.
Publicado: (2022) -
PyEEG: An Open Source Python Module for EEG/MEG Feature Extraction
por: Bao, Forrest Sheng, et al.
Publicado: (2011) -
A Combined Virtual Electrode-Based ESA and CNN Method for MI-EEG Signal Feature Extraction and Classification
por: Lun, Xiangmin, et al.
Publicado: (2023)