Cargando…
Generation of Mouse Basal Ganglia Diffusion Tractography Using 9.4T MRI
Over the years, diffusion tractography has seen increasing use for comparing minute differences in connectivity of brain structures in neurodegenerative diseases and treatments. Studies on connectivity between basal ganglia has been a focal point for studying the effects of diseases such as Parkinso...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society for Brain and Neural Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526107/ https://www.ncbi.nlm.nih.gov/pubmed/31138997 http://dx.doi.org/10.5607/en.2019.28.2.300 |
Sumario: | Over the years, diffusion tractography has seen increasing use for comparing minute differences in connectivity of brain structures in neurodegenerative diseases and treatments. Studies on connectivity between basal ganglia has been a focal point for studying the effects of diseases such as Parkinson's and Alzheimer's, as well as the effects of treatments such as deep brain stimulation. Additionally, in previous studies, diffusion tractography was utilized in disease mouse models to identify white matter alterations, as well as biomarkers that occur in the progression of disease. However, despite the extensive use of mouse models to study model diseases, the structural connectivity of the mouse basal ganglia has been inadequately explored. In this study, we present the methodology of segmenting the basal ganglia of a mouse brain, then generating diffusion tractography between the segmented basal ganglia structures. Additionally, we compare the relative levels of connectivity of connecting fibers between each basal ganglia structure, as well as visualize the shapes of each connection. We believe that our results and future studies utilizing diffusion tractography will be beneficial for properly assessing some of the connectivity changes that are found in the basal ganglia of various mouse models. |
---|