Cargando…

Resolution-elastic neutron scattering by correlation techniques

Neutron scattering applications often require discriminating the elastic contribution from the inelastic contribution. For this purpose, correlation spectroscopy offers an effective tool with both pulsed and continuous neutron sources as well as several advantages: the analysis of the neutron veloci...

Descripción completa

Detalles Bibliográficos
Autores principales: Mezei, F., Caccamo, M.T., Migliardo, F., Magazù, S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526200/
https://www.ncbi.nlm.nih.gov/pubmed/31193259
http://dx.doi.org/10.1016/j.jare.2019.02.003
Descripción
Sumario:Neutron scattering applications often require discriminating the elastic contribution from the inelastic contribution. For this purpose, correlation spectroscopy offers an effective tool with both pulsed and continuous neutron sources as well as several advantages: the analysis of the neutron velocity distribution can be carried out with a duty factor of 50%, independently on the resolution value; the best statistical accuracy for spectra where the elastic part encompasses most of the integrated intensity is provided. Depending on the statistical chopper position, correlation analysis can be used for both incoming and outgoing neutron velocity determination. Moreover, the correlation technique is very profitable for investigating weak signals in the presence of high background, which is often the case for small samples. To provide instrument flexibility and versatility, an innovative approach comprising tuning resolution by variable Resolution-Elastic Neutron Scattering (RENS) is proposed, offering further benefits by enabling systematic trading of intensity for resolution and vice versa. This study puts into evidence the advantages offered by the use of statistical chopper and of correlation technique for RENS in choosing the best compromise between resolution and beam intensity.